a) ∫2x2dx We can rewrite the integral as:
21∫x2dx Using the power rule for integration:
∫xndx=n+1xn+1+C where n is a constant and C is the constant of integration. In this case, n=2. So, 21∫x2dx=21⋅2+1x2+1+C=21⋅3x3+C=6x3+C c) ∫(x+32)(x−54)1dx We can use partial fraction decomposition to simplify the integrand.
Let (x+32)(x−54)1=x+32A+x−54B Multiplying both sides by (x+32)(x−54) gives: 1=A(x−54)+B(x+32) To solve for A and B, we can use the following method: Set x=54: 1=A(54−54)+B(54+32) 1=0+B(1512+10) 1=B(1522) B=2215 Set x=−32: 1=A(−32−54)+B(−32+32) 1=A(15−10−12)+0 1=A(15−22) A=−2215 So, the integral becomes:
∫(x+32)(x−54)1dx=∫(x+32−2215+x−542215)dx =−2215∫x+321dx+2215∫x−541dx Using the fact that ∫x+a1dx=ln∣x+a∣+C, we get: =−2215ln∣x+32∣+2215ln∣x−54∣+C =2215(ln∣x−54∣−ln∣x+32∣)+C =2215lnx+32x−54+C