We need to evaluate two indefinite integrals. a) $\int \frac{x^2}{2} dx$ c) $\int \frac{1}{(x + \frac{2}{3})(x - \frac{4}{5})} dx$

AnalysisIntegrationIndefinite IntegralsPower RulePartial FractionsCalculus
2025/5/20

1. Problem Description

We need to evaluate two indefinite integrals.
a) x22dx\int \frac{x^2}{2} dx
c) 1(x+23)(x45)dx\int \frac{1}{(x + \frac{2}{3})(x - \frac{4}{5})} dx

2. Solution Steps

a) x22dx\int \frac{x^2}{2} dx
We can rewrite the integral as:
12x2dx\frac{1}{2} \int x^2 dx
Using the power rule for integration:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C
where nn is a constant and CC is the constant of integration.
In this case, n=2n = 2.
So, 12x2dx=12x2+12+1+C=12x33+C=x36+C\frac{1}{2} \int x^2 dx = \frac{1}{2} \cdot \frac{x^{2+1}}{2+1} + C = \frac{1}{2} \cdot \frac{x^3}{3} + C = \frac{x^3}{6} + C
c) 1(x+23)(x45)dx\int \frac{1}{(x + \frac{2}{3})(x - \frac{4}{5})} dx
We can use partial fraction decomposition to simplify the integrand.
Let 1(x+23)(x45)=Ax+23+Bx45\frac{1}{(x + \frac{2}{3})(x - \frac{4}{5})} = \frac{A}{x + \frac{2}{3}} + \frac{B}{x - \frac{4}{5}}
Multiplying both sides by (x+23)(x45)(x + \frac{2}{3})(x - \frac{4}{5}) gives:
1=A(x45)+B(x+23)1 = A(x - \frac{4}{5}) + B(x + \frac{2}{3})
To solve for AA and BB, we can use the following method:
Set x=45x = \frac{4}{5}:
1=A(4545)+B(45+23)1 = A(\frac{4}{5} - \frac{4}{5}) + B(\frac{4}{5} + \frac{2}{3})
1=0+B(12+1015)1 = 0 + B(\frac{12 + 10}{15})
1=B(2215)1 = B(\frac{22}{15})
B=1522B = \frac{15}{22}
Set x=23x = -\frac{2}{3}:
1=A(2345)+B(23+23)1 = A(-\frac{2}{3} - \frac{4}{5}) + B(-\frac{2}{3} + \frac{2}{3})
1=A(101215)+01 = A(\frac{-10 - 12}{15}) + 0
1=A(2215)1 = A(\frac{-22}{15})
A=1522A = -\frac{15}{22}
So, the integral becomes:
1(x+23)(x45)dx=(1522x+23+1522x45)dx\int \frac{1}{(x + \frac{2}{3})(x - \frac{4}{5})} dx = \int \left( \frac{-\frac{15}{22}}{x + \frac{2}{3}} + \frac{\frac{15}{22}}{x - \frac{4}{5}} \right) dx
=15221x+23dx+15221x45dx= -\frac{15}{22} \int \frac{1}{x + \frac{2}{3}} dx + \frac{15}{22} \int \frac{1}{x - \frac{4}{5}} dx
Using the fact that 1x+adx=lnx+a+C\int \frac{1}{x+a} dx = \ln|x+a| + C, we get:
=1522lnx+23+1522lnx45+C= -\frac{15}{22} \ln|x + \frac{2}{3}| + \frac{15}{22} \ln|x - \frac{4}{5}| + C
=1522(lnx45lnx+23)+C= \frac{15}{22} \left( \ln|x - \frac{4}{5}| - \ln|x + \frac{2}{3}| \right) + C
=1522lnx45x+23+C= \frac{15}{22} \ln\left| \frac{x - \frac{4}{5}}{x + \frac{2}{3}} \right| + C

3. Final Answer

a) x36+C\frac{x^3}{6} + C
c) 1522lnx45x+23+C\frac{15}{22} \ln\left| \frac{x - \frac{4}{5}}{x + \frac{2}{3}} \right| + C

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2