We are asked to solve the following problems from the image: a. $\lim_{x \to 0} (2e^x - xe^x + 2e^0 + 4)$ b. Find $a$ if $\lim_{x \to \infty} \frac{8x^2+x+1}{ax^2+1} = 1$ c. $\lim_{x \to -\infty} (x + \sqrt{x^2+9})$ d. $\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3}$

AnalysisLimitsCalculusTrigonometryExponentials
2025/5/20

1. Problem Description

We are asked to solve the following problems from the image:
a. limx0(2exxex+2e0+4)\lim_{x \to 0} (2e^x - xe^x + 2e^0 + 4)
b. Find aa if limx8x2+x+1ax2+1=1\lim_{x \to \infty} \frac{8x^2+x+1}{ax^2+1} = 1
c. limx(x+x2+9)\lim_{x \to -\infty} (x + \sqrt{x^2+9})
d. limx0sinxsinxcosxx3\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3}

2. Solution Steps

a. limx0(2exxex+2e0+4)\lim_{x \to 0} (2e^x - xe^x + 2e^0 + 4)
Since e0=1e^0 = 1, substitute x=0x=0:
2e00e0+2e0+4=2(1)0+2(1)+4=2+2+4=82e^0 - 0 \cdot e^0 + 2e^0 + 4 = 2(1) - 0 + 2(1) + 4 = 2 + 2 + 4 = 8
b. limx8x2+x+1ax2+1=1\lim_{x \to \infty} \frac{8x^2+x+1}{ax^2+1} = 1
Divide the numerator and denominator by x2x^2:
limx8+1x+1x2a+1x2=8a\lim_{x \to \infty} \frac{8 + \frac{1}{x} + \frac{1}{x^2}}{a + \frac{1}{x^2}} = \frac{8}{a}
Since the limit is equal to 1, 8a=1\frac{8}{a} = 1, which means a=8a=8.
c. limx(x+x2+9)\lim_{x \to -\infty} (x + \sqrt{x^2+9})
Multiply by the conjugate:
limx(x+x2+9)xx2+9xx2+9=limxx2(x2+9)xx2+9=limx9xx2+9\lim_{x \to -\infty} (x + \sqrt{x^2+9}) \cdot \frac{x - \sqrt{x^2+9}}{x - \sqrt{x^2+9}} = \lim_{x \to -\infty} \frac{x^2 - (x^2+9)}{x - \sqrt{x^2+9}} = \lim_{x \to -\infty} \frac{-9}{x - \sqrt{x^2+9}}
Since xx \to -\infty, we can write x2=x=x\sqrt{x^2} = |x| = -x. Then
limx9xx2+9=limx9xx2(1+9x2)=limx9xx1+9x2=limx9x(x)1+9x2=limx9x+x1+9x2=limx9x(1+1+9x2)\lim_{x \to -\infty} \frac{-9}{x - \sqrt{x^2+9}} = \lim_{x \to -\infty} \frac{-9}{x - \sqrt{x^2(1+\frac{9}{x^2})}} = \lim_{x \to -\infty} \frac{-9}{x - |x|\sqrt{1+\frac{9}{x^2}}} = \lim_{x \to -\infty} \frac{-9}{x - (-x)\sqrt{1+\frac{9}{x^2}}} = \lim_{x \to -\infty} \frac{-9}{x + x\sqrt{1+\frac{9}{x^2}}} = \lim_{x \to -\infty} \frac{-9}{x(1 + \sqrt{1+\frac{9}{x^2}})}
As xx \to -\infty, 9x20\frac{9}{x^2} \to 0, so 1+9x21\sqrt{1+\frac{9}{x^2}} \to 1.
Therefore, limx9x(1+1)=limx92x=0\lim_{x \to -\infty} \frac{-9}{x(1+1)} = \lim_{x \to -\infty} \frac{-9}{2x} = 0
d. limx0sinxsinxcosxx3=limx0sinx(1cosx)x3\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3}
limx0sinxxlimx01cosxx2\lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1 - \cos x}{x^2}
We know limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.
Also, 1cosx=2sin2(x2)1 - \cos x = 2\sin^2(\frac{x}{2}), so limx01cosxx2=limx02sin2(x2)x2=2limx0sin2(x2)x2=2limx0sin(x2)xlimx0sin(x2)x=2limx0sin(x2)2(x2)12limx0sin(x2)2(x2)12=21212=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{x^2} = 2\lim_{x \to 0} \frac{\sin^2(\frac{x}{2})}{x^2} = 2\lim_{x \to 0} \frac{\sin(\frac{x}{2})}{x} \cdot \lim_{x \to 0} \frac{\sin(\frac{x}{2})}{x} = 2\lim_{x \to 0} \frac{\sin(\frac{x}{2})}{2(\frac{x}{2})} \cdot \frac{1}{2} \cdot \lim_{x \to 0} \frac{\sin(\frac{x}{2})}{2(\frac{x}{2})} \cdot \frac{1}{2} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}
Therefore, limx0sinx(1cosx)x3=112=12\lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3} = 1 \cdot \frac{1}{2} = \frac{1}{2}

3. Final Answer

a. 8
b. 8
c. 0
d. 1/2

Related problems in "Analysis"

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6