We are asked to simplify the following two expressions: (e) $\frac{2x^2 + 17x + 21}{(x+2)(x^2-9)}$ (i) $\frac{3x - 10x - 24}{x(x^2 - 4)}$

AlgebraPolynomialsSimplificationRational ExpressionsFactorization
2025/3/24

1. Problem Description

We are asked to simplify the following two expressions:
(e) 2x2+17x+21(x+2)(x29)\frac{2x^2 + 17x + 21}{(x+2)(x^2-9)}
(i) 3x10x24x(x24)\frac{3x - 10x - 24}{x(x^2 - 4)}

2. Solution Steps

(e)
First, we factor the numerator: 2x2+17x+21=(2x+3)(x+7)2x^2 + 17x + 21 = (2x + 3)(x + 7).
Next, we factor the denominator: (x+2)(x29)=(x+2)(x3)(x+3)(x+2)(x^2-9) = (x+2)(x-3)(x+3).
Thus, we have:
2x2+17x+21(x+2)(x29)=(2x+3)(x+7)(x+2)(x3)(x+3)\frac{2x^2 + 17x + 21}{(x+2)(x^2-9)} = \frac{(2x+3)(x+7)}{(x+2)(x-3)(x+3)}.
The expression is already simplified.
(i)
First, simplify the numerator: 3x10x24=7x243x - 10x - 24 = -7x - 24.
Next, factor the denominator: x(x24)=x(x2)(x+2)x(x^2 - 4) = x(x-2)(x+2).
Thus, we have:
3x10x24x(x24)=7x24x(x2)(x+2)\frac{3x - 10x - 24}{x(x^2 - 4)} = \frac{-7x - 24}{x(x-2)(x+2)}.
The expression is already simplified.

3. Final Answer

(e) (2x+3)(x+7)(x+2)(x3)(x+3)\frac{(2x+3)(x+7)}{(x+2)(x-3)(x+3)}
(i) 7x24x(x2)(x+2)\frac{-7x - 24}{x(x-2)(x+2)}