We are given the following system of equations: $ax + by = c^2$ $\frac{a+x}{b} = \frac{b+y}{a}$ $x - y + z = 5$ where $a \neq 0$ and $b \neq 0$.

AlgebraSystems of EquationsLinear EquationsVariable SubstitutionEquation Solving
2025/5/24

1. Problem Description

We are given the following system of equations:
ax+by=c2ax + by = c^2
a+xb=b+ya\frac{a+x}{b} = \frac{b+y}{a}
xy+z=5x - y + z = 5
where a0a \neq 0 and b0b \neq 0.

2. Solution Steps

From the second equation, we have:
a(a+x)=b(b+y)a(a+x) = b(b+y)
a2+ax=b2+bya^2 + ax = b^2 + by
axby=b2a2ax - by = b^2 - a^2
We are given ax+by=c2ax + by = c^2.
Adding the two equations, we get:
axby+ax+by=b2a2+c2ax - by + ax + by = b^2 - a^2 + c^2
2ax=b2a2+c22ax = b^2 - a^2 + c^2
x=b2a2+c22ax = \frac{b^2 - a^2 + c^2}{2a}
Subtracting the two equations, we get:
ax+by(axby)=c2(b2a2)ax + by - (ax - by) = c^2 - (b^2 - a^2)
2by=c2b2+a22by = c^2 - b^2 + a^2
y=c2b2+a22by = \frac{c^2 - b^2 + a^2}{2b}
Now, we substitute xx and yy into the third equation xy+z=5x - y + z = 5:
b2a2+c22ac2b2+a22b+z=5\frac{b^2 - a^2 + c^2}{2a} - \frac{c^2 - b^2 + a^2}{2b} + z = 5
z=5b2a2+c22a+c2b2+a22bz = 5 - \frac{b^2 - a^2 + c^2}{2a} + \frac{c^2 - b^2 + a^2}{2b}
z=5+c2b2+a22bb2a2+c22az = 5 + \frac{c^2 - b^2 + a^2}{2b} - \frac{b^2 - a^2 + c^2}{2a}
z=5+a(c2b2+a2)b(b2a2+c2)2abz = 5 + \frac{a(c^2 - b^2 + a^2) - b(b^2 - a^2 + c^2)}{2ab}
z=5+ac2ab2+a3b3+ba2bc22abz = 5 + \frac{ac^2 - ab^2 + a^3 - b^3 + ba^2 - bc^2}{2ab}
z=5+ac2bc2ab2+a2b+a3b32abz = 5 + \frac{ac^2 - bc^2 - ab^2 + a^2b + a^3 - b^3}{2ab}
z=5+c2(ab)+ab(ab)+(ab)(a2+ab+b2)2abz = 5 + \frac{c^2(a-b) + ab(a-b) + (a-b)(a^2 + ab + b^2)}{2ab}
z=5+(ab)(c2+ab+a2+ab+b2)2abz = 5 + \frac{(a-b)(c^2 + ab + a^2 + ab + b^2)}{2ab}
z=5+(ab)(c2+a2+2ab+b2)2abz = 5 + \frac{(a-b)(c^2 + a^2 + 2ab + b^2)}{2ab}
z=5+(ab)(c2+(a+b)2)2abz = 5 + \frac{(a-b)(c^2 + (a+b)^2)}{2ab}

3. Final Answer

x=b2a2+c22ax = \frac{b^2 - a^2 + c^2}{2a}
y=a2b2+c22by = \frac{a^2 - b^2 + c^2}{2b}
z=5+(ab)(c2+(a+b)2)2abz = 5 + \frac{(a-b)(c^2 + (a+b)^2)}{2ab}

Related problems in "Algebra"

The problem describes a scenario where a reception is being planned, and a committee of 2 people is ...

CombinationsLinear EquationsNumber TheoryProblem Solving
2025/5/27

The problem consists of two parts. The first part asks to solve a system of three linear equations w...

Linear EquationsSystems of EquationsWord ProblemsAlgebraic Manipulation
2025/5/27

The problem describes a farmer, Mr. Anyigbanyo, who wants to cultivate a trapezoidal field. First, ...

Quadratic EquationsTrigonometryGeometryArea Calculation
2025/5/27

The problem asks us to find the value of the function $g(x) = x^2 + 8x - 6$ when $x = -5$. In other...

FunctionsPolynomialsEvaluation
2025/5/27

We are given that $a$ and $b$ are whole numbers such that $a^b = 121$. We want to find the value of ...

ExponentsInteger SolutionsEquations
2025/5/27

The problem asks to simplify the expression $[5a^5b^2 \times 3(ab^3)^2] \div (15a^2b^8)$.

ExponentsSimplificationAlgebraic ExpressionsProduct of PowersQuotient of Powers
2025/5/27

The problem asks us to find the value(s) of $x$ for which the function $f(x) = \frac{3x-1}{2x-6}$ is...

FunctionsDomainRational Functions
2025/5/27

We need to solve the equation $(\frac{1}{3})^{\frac{x^2-2x}{16-2x^2}} = \sqrt[4x]{9}$ for $x$.

Exponents and RadicalsEquationsCubic EquationsSolving Equations
2025/5/27

We are asked to find the value of $w$ given the equation $\log(w+5) + \log(w-5) = 4\log(2) + 2\log(3...

LogarithmsEquationsSolving EquationsAlgebraic ManipulationDomain of Logarithms
2025/5/27

We need to solve the following inequality for $x$: $-9(-2x - 3) \ge 4(2x - 3)$

InequalitiesLinear InequalitiesAlgebraic Manipulation
2025/5/26