We are given a system of two linear equations: $(a+2)x + (a-2)y = 16$ $2x + 4y = a-2$ We are asked to solve the system for $x$ and $y$.

AlgebraLinear EquationsSystems of EquationsDeterminantsSolution Sets
2025/5/25

1. Problem Description

We are given a system of two linear equations:
(a+2)x+(a2)y=16(a+2)x + (a-2)y = 16
2x+4y=a22x + 4y = a-2
We are asked to solve the system for xx and yy.

2. Solution Steps

Let the given equations be
(a+2)x+(a2)y=16(a+2)x + (a-2)y = 16 (1)
2x+4y=a22x + 4y = a-2 (2)
We can use the method of determinants to solve this system.
Let DD be the determinant of the coefficients of xx and yy.
D=a+2a224=4(a+2)2(a2)=4a+82a+4=2a+12=2(a+6)D = \begin{vmatrix} a+2 & a-2 \\ 2 & 4 \end{vmatrix} = 4(a+2) - 2(a-2) = 4a+8-2a+4 = 2a+12 = 2(a+6)
Let DxD_x be the determinant obtained by replacing the xx coefficients with the constants.
Dx=16a2a24=16(4)(a2)(a2)=64(a24a+4)=60+4aa2D_x = \begin{vmatrix} 16 & a-2 \\ a-2 & 4 \end{vmatrix} = 16(4) - (a-2)(a-2) = 64 - (a^2-4a+4) = 60+4a-a^2
Let DyD_y be the determinant obtained by replacing the yy coefficients with the constants.
Dy=a+2162a2=(a+2)(a2)16(2)=a2432=a236=(a6)(a+6)D_y = \begin{vmatrix} a+2 & 16 \\ 2 & a-2 \end{vmatrix} = (a+2)(a-2) - 16(2) = a^2-4-32 = a^2-36 = (a-6)(a+6)
If D0D \neq 0, then the solution is given by
x=DxD=60+4aa22(a+6)=(a24a60)2(a+6)=(a10)(a+6)2(a+6)x = \frac{D_x}{D} = \frac{60+4a-a^2}{2(a+6)} = \frac{-(a^2-4a-60)}{2(a+6)} = \frac{-(a-10)(a+6)}{2(a+6)}
y=DyD=a2362(a+6)=(a6)(a+6)2(a+6)y = \frac{D_y}{D} = \frac{a^2-36}{2(a+6)} = \frac{(a-6)(a+6)}{2(a+6)}
If a6a \neq -6, then
x=(a10)2=10a2x = \frac{-(a-10)}{2} = \frac{10-a}{2}
y=a62y = \frac{a-6}{2}

3. Final Answer

If a6a \neq -6, then x=10a2x = \frac{10-a}{2} and y=a62y = \frac{a-6}{2}.
If a=6a = -6, the determinant DD is

0. The system has either infinitely many solutions or no solution. Substituting $a = -6$ into the equations, we get:

(6+2)x+(62)y=16    4x8y=16    x+2y=4(-6+2)x + (-6-2)y = 16 \implies -4x - 8y = 16 \implies x + 2y = -4
2x+4y=62    2x+4y=8    x+2y=42x + 4y = -6-2 \implies 2x+4y = -8 \implies x+2y = -4
Since both equations are equivalent to x+2y=4x+2y = -4, there are infinitely many solutions when a=6a = -6.
Final Answer:
If a6a \neq -6, x=10a2x = \frac{10-a}{2}, y=a62y = \frac{a-6}{2}.
If a=6a = -6, x+2y=4x+2y = -4 which represents an infinite number of solutions.