Problem 1: x2+y2−2x+2y+1=0 Complete the square for the x terms and y terms.
(x2−2x)+(y2+2y)+1=0 (x2−2x+1)+(y2+2y+1)+1−1−1=0 (x−1)2+(y+1)2−1=0 (x−1)2+(y+1)2=1 This is the equation of a circle with center (1,−1) and radius 1. Problem 2: x2+y2+6x−2y+6=0 Complete the square for the x terms and y terms.
(x2+6x)+(y2−2y)+6=0 (x2+6x+9)+(y2−2y+1)+6−9−1=0 (x+3)2+(y−1)2−4=0 (x+3)2+(y−1)2=4 This is the equation of a circle with center (−3,1) and radius 2. Problem 9: 3x2+3y2−6x+12y+60=0 Divide by 3: x2+y2−2x+4y+20=0 Complete the square for the x terms and y terms.
(x2−2x)+(y2+4y)+20=0 (x2−2x+1)+(y2+4y+4)+20−1−4=0 (x−1)2+(y+2)2+15=0 (x−1)2+(y+2)2=−15 Since the sum of squares cannot be negative, there are no real solutions. This represents no conic section.
Problem 10: 4x2−4y2−2x+2y+1=0 4x2−2x−4y2+2y+1=0 4(x2−21x)−4(y2−21y)+1=0 4(x2−21x+161)−4(y2−21y+161)+1−4(161)+4(161)=0 4(x−41)2−4(y−41)2+1=0 4(x−41)2−4(y−41)2=−1 (y−41)2−(x−41)2=41 This is a hyperbola.