Given a sequence $(u_n)$ such that $u_0 = 3$ and $u_{n+1} = -\frac{1}{3}u_n + 1$. (a) Calculate $u_2$, $u_3$, and $u_4$. (b) Show that $(u_n)$ is neither arithmetic nor geometric. (2a) Let $w_n = u_n - \frac{3}{4}$. Calculate $w_0$, $w_1$, and $w_2$. (b) Show that $(w_n)$ is geometric and justify that it is convergent by specifying its limit. (c) Deduce the limit of $(u_n)$ from the previous results. (3a) Express $w_n$ and $u_n$ as a function of $n$. Justify why $\lim_{n\to\infty} (-\frac{1}{3})^n = 0$. (b) Let $S_n = w_1 + w_2 + \dots + w_n$. Calculate $S_n$ as a function of $n$, and then $\lim_{n\to\infty} S_n$. (c) Let $T_n = u_1 + u_2 + \dots + u_n$. Deduce $T_n$ as a function of $n$, and then $\lim_{n\to\infty} T_n$.

AnalysisSequencesSeriesLimitsGeometric SequencesConvergenceArithmetic Sequences
2025/3/27

1. Problem Description

Given a sequence (un)(u_n) such that u0=3u_0 = 3 and un+1=13un+1u_{n+1} = -\frac{1}{3}u_n + 1.
(a) Calculate u2u_2, u3u_3, and u4u_4.
(b) Show that (un)(u_n) is neither arithmetic nor geometric.
(2a) Let wn=un34w_n = u_n - \frac{3}{4}. Calculate w0w_0, w1w_1, and w2w_2.
(b) Show that (wn)(w_n) is geometric and justify that it is convergent by specifying its limit.
(c) Deduce the limit of (un)(u_n) from the previous results.
(3a) Express wnw_n and unu_n as a function of nn. Justify why limn(13)n=0\lim_{n\to\infty} (-\frac{1}{3})^n = 0.
(b) Let Sn=w1+w2++wnS_n = w_1 + w_2 + \dots + w_n. Calculate SnS_n as a function of nn, and then limnSn\lim_{n\to\infty} S_n.
(c) Let Tn=u1+u2++unT_n = u_1 + u_2 + \dots + u_n. Deduce TnT_n as a function of nn, and then limnTn\lim_{n\to\infty} T_n.

2. Solution Steps

(1a)
u0=3u_0 = 3
u1=13u0+1=13(3)+1=1+1=0u_1 = -\frac{1}{3}u_0 + 1 = -\frac{1}{3}(3) + 1 = -1+1 = 0
u2=13u1+1=13(0)+1=1u_2 = -\frac{1}{3}u_1 + 1 = -\frac{1}{3}(0) + 1 = 1
u3=13u2+1=13(1)+1=23u_3 = -\frac{1}{3}u_2 + 1 = -\frac{1}{3}(1) + 1 = \frac{2}{3}
u4=13u3+1=13(23)+1=29+1=79u_4 = -\frac{1}{3}u_3 + 1 = -\frac{1}{3}(\frac{2}{3}) + 1 = -\frac{2}{9} + 1 = \frac{7}{9}
(1b)
If (un)(u_n) is arithmetic, then u1u0=u2u1u_1 - u_0 = u_2 - u_1. We have 03=30-3 = -3 and 10=11-0 = 1. Since 31-3 \neq 1, the sequence is not arithmetic.
If (un)(u_n) is geometric, then u1u0=u2u1\frac{u_1}{u_0} = \frac{u_2}{u_1}. We have 03=0\frac{0}{3} = 0 and 10\frac{1}{0} is undefined. Even if we ignore u1u_1, we can see u2u1\frac{u_2}{u_1} is undefined, so the sequence is not geometric.
Alternatively, if (un)(u_n) is geometric, u1u0=u2u1\frac{u_1}{u_0} = \frac{u_2}{u_1}. We have u2u1=10\frac{u_2}{u_1} = \frac{1}{0} and u3u2=2/31=23\frac{u_3}{u_2} = \frac{2/3}{1} = \frac{2}{3}. Hence, since 1023\frac{1}{0} \neq \frac{2}{3}, the sequence is not geometric.
(2a)
wn=un34w_n = u_n - \frac{3}{4}.
w0=u034=334=1234=94w_0 = u_0 - \frac{3}{4} = 3 - \frac{3}{4} = \frac{12-3}{4} = \frac{9}{4}
w1=u134=034=34w_1 = u_1 - \frac{3}{4} = 0 - \frac{3}{4} = -\frac{3}{4}
w2=u234=134=14w_2 = u_2 - \frac{3}{4} = 1 - \frac{3}{4} = \frac{1}{4}
(2b)
We want to show that wn+1wn\frac{w_{n+1}}{w_n} is constant.
wn+1=un+134=13un+134=13un+14w_{n+1} = u_{n+1} - \frac{3}{4} = -\frac{1}{3}u_n + 1 - \frac{3}{4} = -\frac{1}{3}u_n + \frac{1}{4}
wn+1=13(un34)=13wnw_{n+1} = -\frac{1}{3}(u_n - \frac{3}{4}) = -\frac{1}{3}w_n
Thus, wn+1wn=13\frac{w_{n+1}}{w_n} = -\frac{1}{3}. Therefore, (wn)(w_n) is geometric with common ratio r=13r = -\frac{1}{3}.
Since r=13=13<1|r| = |-\frac{1}{3}| = \frac{1}{3} < 1, the sequence converges to

0. Thus $\lim_{n\to\infty} w_n = 0$.

(2c)
Since wn=un34w_n = u_n - \frac{3}{4}, then un=wn+34u_n = w_n + \frac{3}{4}.
Thus limnun=limn(wn+34)=limnwn+34=0+34=34\lim_{n\to\infty} u_n = \lim_{n\to\infty} (w_n + \frac{3}{4}) = \lim_{n\to\infty} w_n + \frac{3}{4} = 0 + \frac{3}{4} = \frac{3}{4}.
(3a)
Since (wn)(w_n) is a geometric sequence with w0=94w_0 = \frac{9}{4} and ratio r=13r = -\frac{1}{3}, we have
wn=w0rn=94(13)nw_n = w_0 r^n = \frac{9}{4} (-\frac{1}{3})^n
Since un=wn+34u_n = w_n + \frac{3}{4}, we have
un=94(13)n+34u_n = \frac{9}{4} (-\frac{1}{3})^n + \frac{3}{4}
As nn \to \infty, (13)n0(-\frac{1}{3})^n \to 0 because 13<1|-\frac{1}{3}| < 1. Therefore limn(13)n=0\lim_{n\to\infty} (-\frac{1}{3})^n = 0.
If nn is even, then (13)n=(13)n>0(-\frac{1}{3})^n = (\frac{1}{3})^n > 0
If nn is odd, then (13)n=(13)n<0(-\frac{1}{3})^n = -(\frac{1}{3})^n < 0
As nn \to \infty, (13)n0(\frac{1}{3})^n \to 0. Hence limn(13)n=0\lim_{n\to\infty} (-\frac{1}{3})^n = 0
(3b)
Sn=w1+w2++wnS_n = w_1 + w_2 + \dots + w_n. This is the sum of the first nn terms of a geometric sequence with first term w1=34w_1 = -\frac{3}{4} and ratio r=13r = -\frac{1}{3}.
Sn=w1(1rn)1r=34(1(13)n)1(13)=34(1(13)n)43=916(1(13)n)S_n = \frac{w_1(1-r^n)}{1-r} = \frac{-\frac{3}{4}(1-(-\frac{1}{3})^n)}{1-(-\frac{1}{3})} = \frac{-\frac{3}{4}(1-(-\frac{1}{3})^n)}{\frac{4}{3}} = -\frac{9}{16}(1-(-\frac{1}{3})^n)
As nn \to \infty, (13)n0(-\frac{1}{3})^n \to 0, so Sn916(10)=916S_n \to -\frac{9}{16}(1-0) = -\frac{9}{16}
(3c)
Tn=u1+u2++unT_n = u_1 + u_2 + \dots + u_n
Tn=(w1+34)+(w2+34)++(wn+34)T_n = (w_1 + \frac{3}{4}) + (w_2 + \frac{3}{4}) + \dots + (w_n + \frac{3}{4})
Tn=(w1+w2++wn)+n(34)T_n = (w_1 + w_2 + \dots + w_n) + n(\frac{3}{4})
Tn=Sn+3n4T_n = S_n + \frac{3n}{4}
Tn=916(1(13)n)+3n4T_n = -\frac{9}{16}(1-(-\frac{1}{3})^n) + \frac{3n}{4}
Since limn(13)n=0\lim_{n\to\infty} (-\frac{1}{3})^n = 0, we have limn[916(1(13)n)]=916\lim_{n\to\infty} [-\frac{9}{16}(1-(-\frac{1}{3})^n)] = -\frac{9}{16}. However, limn3n4=\lim_{n\to\infty} \frac{3n}{4} = \infty.
Thus, limnTn=\lim_{n\to\infty} T_n = \infty.

3. Final Answer

(1a) u2=1u_2 = 1, u3=23u_3 = \frac{2}{3}, u4=79u_4 = \frac{7}{9}
(1b) (un)(u_n) is neither arithmetic nor geometric.
(2a) w0=94w_0 = \frac{9}{4}, w1=34w_1 = -\frac{3}{4}, w2=14w_2 = \frac{1}{4}
(2b) (wn)(w_n) is geometric with common ratio r=13r = -\frac{1}{3}. limnwn=0\lim_{n\to\infty} w_n = 0
(2c) limnun=34\lim_{n\to\infty} u_n = \frac{3}{4}
(3a) wn=94(13)nw_n = \frac{9}{4} (-\frac{1}{3})^n, un=94(13)n+34u_n = \frac{9}{4} (-\frac{1}{3})^n + \frac{3}{4}, limn(13)n=0\lim_{n\to\infty} (-\frac{1}{3})^n = 0
(3b) Sn=916(1(13)n)S_n = -\frac{9}{16}(1-(-\frac{1}{3})^n), limnSn=916\lim_{n\to\infty} S_n = -\frac{9}{16}
(3c) Tn=916(1(13)n)+3n4T_n = -\frac{9}{16}(1-(-\frac{1}{3})^n) + \frac{3n}{4}, limnTn=\lim_{n\to\infty} T_n = \infty

Related problems in "Analysis"

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1