$\sin\theta + \cos\theta = \frac{1}{4}$のとき、$\sin\theta\cos\theta$の値と、$\sin^3\theta + \cos^3\theta$の値を求める問題です。代数学三角関数恒等式因数分解2025/6/91. 問題の内容sinθ+cosθ=14\sin\theta + \cos\theta = \frac{1}{4}sinθ+cosθ=41のとき、sinθcosθ\sin\theta\cos\thetasinθcosθの値と、sin3θ+cos3θ\sin^3\theta + \cos^3\thetasin3θ+cos3θの値を求める問題です。2. 解き方の手順まず、sinθcosθ\sin\theta\cos\thetasinθcosθの値を求めます。sinθ+cosθ=14\sin\theta + \cos\theta = \frac{1}{4}sinθ+cosθ=41の両辺を2乗します。(sinθ+cosθ)2=(14)2(\sin\theta + \cos\theta)^2 = (\frac{1}{4})^2(sinθ+cosθ)2=(41)2sin2θ+2sinθcosθ+cos2θ=116\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{16}sin2θ+2sinθcosθ+cos2θ=161sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=1なので、1+2sinθcosθ=1161 + 2\sin\theta\cos\theta = \frac{1}{16}1+2sinθcosθ=1612sinθcosθ=116−12\sin\theta\cos\theta = \frac{1}{16} - 12sinθcosθ=161−12sinθcosθ=116−16162\sin\theta\cos\theta = \frac{1}{16} - \frac{16}{16}2sinθcosθ=161−16162sinθcosθ=−15162\sin\theta\cos\theta = -\frac{15}{16}2sinθcosθ=−1615sinθcosθ=−1532\sin\theta\cos\theta = -\frac{15}{32}sinθcosθ=−3215次に、sin3θ+cos3θ\sin^3\theta + \cos^3\thetasin3θ+cos3θの値を求めます。sin3θ+cos3θ\sin^3\theta + \cos^3\thetasin3θ+cos3θは因数分解できます。sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta)sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)sinθ+cosθ=14\sin\theta + \cos\theta = \frac{1}{4}sinθ+cosθ=41、sinθcosθ=−1532\sin\theta\cos\theta = -\frac{15}{32}sinθcosθ=−3215を代入します。sin3θ+cos3θ=(14)(1−(−1532))\sin^3\theta + \cos^3\theta = (\frac{1}{4})(1 - (-\frac{15}{32}))sin3θ+cos3θ=(41)(1−(−3215))sin3θ+cos3θ=(14)(1+1532)\sin^3\theta + \cos^3\theta = (\frac{1}{4})(1 + \frac{15}{32})sin3θ+cos3θ=(41)(1+3215)sin3θ+cos3θ=(14)(3232+1532)\sin^3\theta + \cos^3\theta = (\frac{1}{4})(\frac{32}{32} + \frac{15}{32})sin3θ+cos3θ=(41)(3232+3215)sin3θ+cos3θ=(14)(4732)\sin^3\theta + \cos^3\theta = (\frac{1}{4})(\frac{47}{32})sin3θ+cos3θ=(41)(3247)sin3θ+cos3θ=47128\sin^3\theta + \cos^3\theta = \frac{47}{128}sin3θ+cos3θ=128473. 最終的な答えsinθcosθ=−1532\sin\theta\cos\theta = -\frac{15}{32}sinθcosθ=−3215sin3θ+cos3θ=47128\sin^3\theta + \cos^3\theta = \frac{47}{128}sin3θ+cos3θ=12847