The problem provides data on prices and quantities of three raw materials (A, B, C) in two locations (Lieu 0 and Lieu 1). We need to calculate the Laspeyres and Paasche indices for both price and quantity, comparing Lieu 1 to Lieu 0 and Lieu 0 to Lieu 1. Finally, we need to calculate the Fisher index for price and quantity comparing Lieu 1 to Lieu 0.

Applied MathematicsIndex NumbersPrice IndexQuantity IndexLaspeyres IndexPaasche IndexFisher IndexEconomics
2025/6/9

1. Problem Description

The problem provides data on prices and quantities of three raw materials (A, B, C) in two locations (Lieu 0 and Lieu 1). We need to calculate the Laspeyres and Paasche indices for both price and quantity, comparing Lieu 1 to Lieu 0 and Lieu 0 to Lieu

1. Finally, we need to calculate the Fisher index for price and quantity comparing Lieu 1 to Lieu

0.

2. Solution Steps

First, let's define the notation:
- P0iP_{0i}: Price of product ii in Lieu 0
- Q0iQ_{0i}: Quantity of product ii in Lieu 0
- P1iP_{1i}: Price of product ii in Lieu 1
- Q1iQ_{1i}: Quantity of product ii in Lieu 1
The data is:
- A: P0A=3.80P_{0A} = 3.80, Q0A=300Q_{0A} = 300, P1A=4.05P_{1A} = 4.05, Q1A=200Q_{1A} = 200
- B: P0B=4.75P_{0B} = 4.75, Q0B=300Q_{0B} = 300, P1B=4.50P_{1B} = 4.50, Q1B=400Q_{1B} = 400
- C: P0C=5.50P_{0C} = 5.50, Q0C=400Q_{0C} = 400, P1C=5.50P_{1C} = 5.50, Q1C=400Q_{1C} = 400

1. Calculate Laspeyres and Paasche indices comparing Lieu 1 to Lieu 0:

Laspeyres Price Index (Lieu 1 vs Lieu 0):
LP=P1iQ0iP0iQ0iL_P = \frac{\sum P_{1i} Q_{0i}}{\sum P_{0i} Q_{0i}}
LP=(4.05300)+(4.50300)+(5.50400)(3.80300)+(4.75300)+(5.50400)=1215+1350+22001140+1425+2200=47654765=1L_P = \frac{(4.05 * 300) + (4.50 * 300) + (5.50 * 400)}{(3.80 * 300) + (4.75 * 300) + (5.50 * 400)} = \frac{1215 + 1350 + 2200}{1140 + 1425 + 2200} = \frac{4765}{4765} = 1
Laspeyres Quantity Index (Lieu 1 vs Lieu 0):
LQ=P0iQ1iP0iQ0iL_Q = \frac{\sum P_{0i} Q_{1i}}{\sum P_{0i} Q_{0i}}
LQ=(3.80200)+(4.75400)+(5.50400)(3.80300)+(4.75300)+(5.50400)=760+1900+22001140+1425+2200=486047651.020L_Q = \frac{(3.80 * 200) + (4.75 * 400) + (5.50 * 400)}{(3.80 * 300) + (4.75 * 300) + (5.50 * 400)} = \frac{760 + 1900 + 2200}{1140 + 1425 + 2200} = \frac{4860}{4765} \approx 1.020
Paasche Price Index (Lieu 1 vs Lieu 0):
PP=P1iQ1iP0iQ1iP_P = \frac{\sum P_{1i} Q_{1i}}{\sum P_{0i} Q_{1i}}
PP=(4.05200)+(4.50400)+(5.50400)(3.80200)+(4.75400)+(5.50400)=810+1800+2200760+1900+2200=481048600.990P_P = \frac{(4.05 * 200) + (4.50 * 400) + (5.50 * 400)}{(3.80 * 200) + (4.75 * 400) + (5.50 * 400)} = \frac{810 + 1800 + 2200}{760 + 1900 + 2200} = \frac{4810}{4860} \approx 0.990
Paasche Quantity Index (Lieu 1 vs Lieu 0):
PQ=P1iQ1iP1iQ0iP_Q = \frac{\sum P_{1i} Q_{1i}}{\sum P_{1i} Q_{0i}}
PQ=(4.05200)+(4.50400)+(5.50400)(4.05300)+(4.50300)+(5.50400)=810+1800+22001215+1350+2200=481047651.010P_Q = \frac{(4.05 * 200) + (4.50 * 400) + (5.50 * 400)}{(4.05 * 300) + (4.50 * 300) + (5.50 * 400)} = \frac{810 + 1800 + 2200}{1215 + 1350 + 2200} = \frac{4810}{4765} \approx 1.010

2. Calculate Laspeyres and Paasche indices comparing Lieu 0 to Lieu 1:

Laspeyres Price Index (Lieu 0 vs Lieu 1):
LP=P0iQ1iP1iQ1iL_P = \frac{\sum P_{0i} Q_{1i}}{\sum P_{1i} Q_{1i}}
LP=(3.80200)+(4.75400)+(5.50400)(4.05200)+(4.50400)+(5.50400)=760+1900+2200810+1800+2200=486048101.010L_P = \frac{(3.80 * 200) + (4.75 * 400) + (5.50 * 400)}{(4.05 * 200) + (4.50 * 400) + (5.50 * 400)} = \frac{760 + 1900 + 2200}{810 + 1800 + 2200} = \frac{4860}{4810} \approx 1.010
Laspeyres Quantity Index (Lieu 0 vs Lieu 1):
LQ=P1iQ0iP1iQ1iL_Q = \frac{\sum P_{1i} Q_{0i}}{\sum P_{1i} Q_{1i}}
LQ=(4.05300)+(4.50300)+(5.50400)(4.05200)+(4.50400)+(5.50400)=1215+1350+2200810+1800+2200=476548100.991L_Q = \frac{(4.05 * 300) + (4.50 * 300) + (5.50 * 400)}{(4.05 * 200) + (4.50 * 400) + (5.50 * 400)} = \frac{1215 + 1350 + 2200}{810 + 1800 + 2200} = \frac{4765}{4810} \approx 0.991
Paasche Price Index (Lieu 0 vs Lieu 1):
PP=P0iQ0iP1iQ0iP_P = \frac{\sum P_{0i} Q_{0i}}{\sum P_{1i} Q_{0i}}
PP=(3.80300)+(4.75300)+(5.50400)(4.05300)+(4.50300)+(5.50400)=1140+1425+22001215+1350+2200=47654765=1P_P = \frac{(3.80 * 300) + (4.75 * 300) + (5.50 * 400)}{(4.05 * 300) + (4.50 * 300) + (5.50 * 400)} = \frac{1140 + 1425 + 2200}{1215 + 1350 + 2200} = \frac{4765}{4765} = 1
Paasche Quantity Index (Lieu 0 vs Lieu 1):
PQ=P0iQ0iP0iQ1iP_Q = \frac{\sum P_{0i} Q_{0i}}{\sum P_{0i} Q_{1i}}
PQ=(3.80300)+(4.75300)+(5.50400)(3.80200)+(4.75400)+(5.50400)=1140+1425+2200760+1900+2200=476548600.980P_Q = \frac{(3.80 * 300) + (4.75 * 300) + (5.50 * 400)}{(3.80 * 200) + (4.75 * 400) + (5.50 * 400)} = \frac{1140 + 1425 + 2200}{760 + 1900 + 2200} = \frac{4765}{4860} \approx 0.980

3. Calculate Fisher index comparing Lieu 1 to Lieu 0:

Fisher Price Index (Lieu 1 vs Lieu 0):
FP=LPPP=10.990=0.9900.995F_P = \sqrt{L_P * P_P} = \sqrt{1 * 0.990} = \sqrt{0.990} \approx 0.995
Fisher Quantity Index (Lieu 1 vs Lieu 0):
FQ=LQPQ=1.0201.010=1.03021.015F_Q = \sqrt{L_Q * P_Q} = \sqrt{1.020 * 1.010} = \sqrt{1.0302} \approx 1.015

3. Final Answer

1. Laspeyres Price Index (Lieu 1 vs Lieu 0): 1

Laspeyres Quantity Index (Lieu 1 vs Lieu 0): 1.020
Paasche Price Index (Lieu 1 vs Lieu 0): 0.990
Paasche Quantity Index (Lieu 1 vs Lieu 0): 1.010

2. Laspeyres Price Index (Lieu 0 vs Lieu 1): 1.010

Laspeyres Quantity Index (Lieu 0 vs Lieu 1): 0.991
Paasche Price Index (Lieu 0 vs Lieu 1): 1
Paasche Quantity Index (Lieu 0 vs Lieu 1): 0.980

3. Fisher Price Index (Lieu 1 vs Lieu 0): 0.995

Fisher Quantity Index (Lieu 1 vs Lieu 0): 1.015

Related problems in "Applied Mathematics"

The problem asks us to find the value of $y$ such that the three vectors $\vec{a} = 7\hat{i} + y\hat...

Linear AlgebraVectorsLinear DependenceDeterminantsScalar Triple Product
2025/6/15

The problem states that the cost for manufacturing $n$ desks is $C$ dollars, where $C = f(n)$. We ne...

Cost FunctionModeling
2025/6/12

The problem provides a formula relating the final velocity ($v$) of an object to its initial velocit...

PhysicsKinematicsVelocityAccelerationFormula ApplicationSquare Roots
2025/6/10

The problem asks to calculate the final velocity of a moving car, given its initial velocity, accele...

KinematicsPhysicsEquations of MotionSquare RootsVelocity
2025/6/10

The problem asks us to calculate Laspeyres and Paasche indices for the cost of living in different A...

Index NumbersEconomicsLaspeyres IndexPaasche IndexPrice IndicesCircularity Test
2025/6/9

The problem asks us to identify the statement that is demonstrably true based on the provided table ...

Data AnalysisRatioPercentageEconomic DataTrade Volume
2025/6/8

The problem asks us to estimate the total number of passengers transported by airline S, given that ...

EstimationWord ProblemUnits ConversionDivision
2025/6/8

The problem asks to calculate the approximate percentage increase in the manufacturing product shipm...

Percentage IncreaseData AnalysisArithmeticApproximation
2025/6/8

The problem asks us to find the approximate decrease in annual product sales per business establishm...

Data AnalysisStatisticsPercentage ChangeProblem Solving
2025/6/8

The problem asks us to estimate the value of $x$ from the graph, where $x$ corresponds to the "growt...

Graph AnalysisData InterpretationGrowth RateEstimation
2025/6/8