The problem asks us to calculate Laspeyres and Paasche indices for the cost of living in different African cities (Dakar, Abidjan, and Bamako) using the provided price (P) and quantity (Q) data for logement (housing), nourriture (food), and électricité (electricity). We need to calculate these indices with different base cities and then determine if the Laspeyres index is circular.

Applied MathematicsIndex NumbersEconomicsLaspeyres IndexPaasche IndexPrice IndicesCircularity Test
2025/6/9

1. Problem Description

The problem asks us to calculate Laspeyres and Paasche indices for the cost of living in different African cities (Dakar, Abidjan, and Bamako) using the provided price (P) and quantity (Q) data for logement (housing), nourriture (food), and électricité (electricity). We need to calculate these indices with different base cities and then determine if the Laspeyres index is circular.

2. Solution Steps

First, let's define the formulas for the Laspeyres and Paasche indices:
Laspeyres Index:
L=PtQ0P0Q0L = \frac{\sum P_t Q_0}{\sum P_0 Q_0}
Paasche Index:
P=PtQtP0QtP = \frac{\sum P_t Q_t}{\sum P_0 Q_t}
where PtP_t is the price in the current period, QtQ_t is the quantity in the current period, P0P_0 is the price in the base period, and Q0Q_0 is the quantity in the base period.
1.a. Dakar (t), Abidjan (0)
Laspeyres:
L=(22+42+21)(32+52+91)=4+8+26+10+9=1425=0.56L = \frac{(2*2 + 4*2 + 2*1)}{(3*2 + 5*2 + 9*1)} = \frac{4 + 8 + 2}{6 + 10 + 9} = \frac{14}{25} = 0.56
Paasche:
P=(24+42+21)(34+52+91)=8+8+212+10+9=1831=0.5806P = \frac{(2*4 + 4*2 + 2*1)}{(3*4 + 5*2 + 9*1)} = \frac{8 + 8 + 2}{12 + 10 + 9} = \frac{18}{31} = 0.5806
1.b. Abidjan (t), Dakar (0)
Laspeyres:
L=(34+52+91)(24+42+21)=12+10+98+8+2=3118=1.7222L = \frac{(3*4 + 5*2 + 9*1)}{(2*4 + 4*2 + 2*1)} = \frac{12 + 10 + 9}{8 + 8 + 2} = \frac{31}{18} = 1.7222
Paasche:
P=(32+52+91)(22+42+21)=6+10+94+8+2=2514=1.7857P = \frac{(3*2 + 5*2 + 9*1)}{(2*2 + 4*2 + 2*1)} = \frac{6 + 10 + 9}{4 + 8 + 2} = \frac{25}{14} = 1.7857
2.a. Abidjan (t), Bamako (0)
Laspeyres:
L=(33+54+92)(33+34+12)=9+20+189+12+2=4723=2.0435L = \frac{(3*3 + 5*4 + 9*2)}{(3*3 + 3*4 + 1*2)} = \frac{9 + 20 + 18}{9 + 12 + 2} = \frac{47}{23} = 2.0435
Paasche:
P=(32+52+91)(32+32+11)=6+10+96+6+1=2513=1.9231P = \frac{(3*2 + 5*2 + 9*1)}{(3*2 + 3*2 + 1*1)} = \frac{6 + 10 + 9}{6 + 6 + 1} = \frac{25}{13} = 1.9231
2.b. Bamako (t), Dakar (0)
Laspeyres:
L=(34+32+11)(24+42+21)=12+6+18+8+2=1918=1.0556L = \frac{(3*4 + 3*2 + 1*1)}{(2*4 + 4*2 + 2*1)} = \frac{12 + 6 + 1}{8 + 8 + 2} = \frac{19}{18} = 1.0556
Paasche:
P=(33+34+12)(23+42+21)=9+12+26+8+2=2316=1.4375P = \frac{(3*3 + 3*4 + 1*2)}{(2*3 + 4*2 + 2*1)} = \frac{9 + 12 + 2}{6 + 8 + 2} = \frac{23}{16} = 1.4375

3. Circularity of Laspeyres Index

To check for circularity, we need to see if the Laspeyres index from city A to city B, multiplied by the Laspeyres index from city B to city C, equals the Laspeyres index from city A to city C. Let L(A, B) denote the Laspeyres index of A with B as the base. We need to check if L(Dakar, Abidjan) * L(Abidjan, Bamako) = L(Dakar, Bamako).
We have L(Dakar, Abidjan) = 0.56 (from 1a). Then L(Abidjan, Dakar) = 1/0.56 = 1.7857 (Using reciprocal property).
We have L(Abidjan, Bamako) = 2.0435 (from 2a). Then L(Bamako, Abidjan) = 1/2.0435 = 0.4893
We have L(Bamako, Dakar). To Calculate L(Dakar, Bamako), we compute:
L(Dakar, Bamako) = (23+44+22)(33+34+12)=6+16+49+12+2=2623=1.1304\frac{(2*3 + 4*4 + 2*2)}{(3*3 + 3*4 + 1*2)} = \frac{6 + 16 + 4}{9 + 12 + 2} = \frac{26}{23} = 1.1304
So, we require: L(Dakar, Abidjan) * L(Abidjan, Bamako) = L(Dakar, Bamako) i.e., 0.562.04351.13040.56 * 2.0435 \approx 1.1304 which is true.
Alternatively,
L(Abidjan, Dakar) = 1.7222 (from 1b).
L(Bamako, Abidjan) can be calculated as 1/2.0435 = 0.4893 (Using reciprocal property)
Now, L(Bamako, Dakar) = (34+32+11)(24+42+21)=1918=1.0556\frac{(3*4 + 3*2 + 1*1)}{(2*4 + 4*2 + 2*1)} = \frac{19}{18} = 1.0556
We require L(Abidjan, Dakar) * L(Bamako, Abidjan) = L(Bamako, Dakar) i.e. 1.72220.48931.05561.7222 * 0.4893 \approx 1.0556, which is true.
To be thorough, we can calculate L(Dakar, Bamako) directly as follows:
L(Dakar,Bamako)=(23+44+22)(33+34+12)=6+16+49+12+2=26231.1304L(Dakar, Bamako) = \frac{(2*3 + 4*4 + 2*2)}{(3*3 + 3*4 + 1*2)} = \frac{6 + 16 + 4}{9 + 12 + 2} = \frac{26}{23} \approx 1.1304
Also, calculate L(Abidjan, Dakar) as 31/18 = 1.7222 (as found in part 1b) and L(Abidjan, Bamako) as 47/23 = 2.0435 (as found in part 2a).
Then, we calculate L(Dakar, Bamako) from the indices calculated earlier:
L(Dakar,Bamako)=L(Abidjan,Bamako)L(Abidjan,Dakar)=47/2331/18=47182331=8467131.1865L(Dakar, Bamako) = \frac{L(Abidjan, Bamako)}{L(Abidjan, Dakar)} = \frac{47/23}{31/18} = \frac{47*18}{23*31} = \frac{846}{713} \approx 1.1865. This value is different.
We conclude that the Laspeyres index is *not* circular.

3. Final Answer

1.a. Dakar (t), Abidjan (0): Laspeyres = 0.56, Paasche = 0.5806
1.b. Abidjan (t), Dakar (0): Laspeyres = 1.7222, Paasche = 1.7857
2.a. Abidjan (t), Bamako (0): Laspeyres = 2.0435, Paasche = 1.9231
2.b. Bamako (t), Dakar (0): Laspeyres = 1.0556, Paasche = 1.4375

3. The Laspeyres index is not circular.

Related problems in "Applied Mathematics"

The problem asks us to find the value of $y$ such that the three vectors $\vec{a} = 7\hat{i} + y\hat...

Linear AlgebraVectorsLinear DependenceDeterminantsScalar Triple Product
2025/6/15

The problem states that the cost for manufacturing $n$ desks is $C$ dollars, where $C = f(n)$. We ne...

Cost FunctionModeling
2025/6/12

The problem provides a formula relating the final velocity ($v$) of an object to its initial velocit...

PhysicsKinematicsVelocityAccelerationFormula ApplicationSquare Roots
2025/6/10

The problem asks to calculate the final velocity of a moving car, given its initial velocity, accele...

KinematicsPhysicsEquations of MotionSquare RootsVelocity
2025/6/10

The problem provides data on prices and quantities of three raw materials (A, B, C) in two locations...

Index NumbersPrice IndexQuantity IndexLaspeyres IndexPaasche IndexFisher IndexEconomics
2025/6/9

The problem asks us to identify the statement that is demonstrably true based on the provided table ...

Data AnalysisRatioPercentageEconomic DataTrade Volume
2025/6/8

The problem asks us to estimate the total number of passengers transported by airline S, given that ...

EstimationWord ProblemUnits ConversionDivision
2025/6/8

The problem asks to calculate the approximate percentage increase in the manufacturing product shipm...

Percentage IncreaseData AnalysisArithmeticApproximation
2025/6/8

The problem asks us to find the approximate decrease in annual product sales per business establishm...

Data AnalysisStatisticsPercentage ChangeProblem Solving
2025/6/8

The problem asks us to estimate the value of $x$ from the graph, where $x$ corresponds to the "growt...

Graph AnalysisData InterpretationGrowth RateEstimation
2025/6/8