The problem asks us to simplify the expression $\frac{2x-1}{3} - \frac{x-4}{4} + \frac{2x+1}{8}$ and express the result in the form $px+q$, where $p$ and $q$ are rational numbers. Then we need to state the values of $p$ and $q$.

AlgebraAlgebraic ManipulationSimplificationRational Expressions
2025/6/10

1. Problem Description

The problem asks us to simplify the expression 2x13x44+2x+18\frac{2x-1}{3} - \frac{x-4}{4} + \frac{2x+1}{8} and express the result in the form px+qpx+q, where pp and qq are rational numbers. Then we need to state the values of pp and qq.

2. Solution Steps

First, we find a common denominator for the fractions, which is
2

4. We rewrite each fraction with the common denominator:

2x13=8(2x1)24=16x824\frac{2x-1}{3} = \frac{8(2x-1)}{24} = \frac{16x - 8}{24}
x44=6(x4)24=6x2424\frac{x-4}{4} = \frac{6(x-4)}{24} = \frac{6x - 24}{24}
2x+18=3(2x+1)24=6x+324\frac{2x+1}{8} = \frac{3(2x+1)}{24} = \frac{6x + 3}{24}
Now, we substitute these equivalent fractions into the original expression:
2x13x44+2x+18=16x8246x2424+6x+324\frac{2x-1}{3} - \frac{x-4}{4} + \frac{2x+1}{8} = \frac{16x - 8}{24} - \frac{6x - 24}{24} + \frac{6x + 3}{24}
Combine the fractions:
(16x8)(6x24)+(6x+3)24\frac{(16x - 8) - (6x - 24) + (6x + 3)}{24}
Distribute the negative sign and combine like terms:
16x86x+24+6x+324=(16x6x+6x)+(8+24+3)24\frac{16x - 8 - 6x + 24 + 6x + 3}{24} = \frac{(16x - 6x + 6x) + (-8 + 24 + 3)}{24}
16x+1924\frac{16x + 19}{24}
Separate the terms:
16x24+1924\frac{16x}{24} + \frac{19}{24}
Simplify the fraction 1624\frac{16}{24}:
1624=23\frac{16}{24} = \frac{2}{3}
Thus, we have:
23x+1924\frac{2}{3}x + \frac{19}{24}
So, we have the expression in the form px+qpx + q with p=23p = \frac{2}{3} and q=1924q = \frac{19}{24}.

3. Final Answer

p=23p = \frac{2}{3}
q=1924q = \frac{19}{24}

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12