We are asked to evaluate three indefinite integrals: a) $\int \frac{x^2}{2} dx$ b) $\int \frac{x}{x+1} dx$ c) $\int \frac{1}{(x+\frac{2}{3})(x-\frac{4}{5})} dx$

AnalysisIntegrationIndefinite IntegralsPower RulePartial Fraction DecompositionLogarithmic Functions
2025/6/10

1. Problem Description

We are asked to evaluate three indefinite integrals:
a) x22dx\int \frac{x^2}{2} dx
b) xx+1dx\int \frac{x}{x+1} dx
c) 1(x+23)(x45)dx\int \frac{1}{(x+\frac{2}{3})(x-\frac{4}{5})} dx

2. Solution Steps

a) We need to evaluate x22dx\int \frac{x^2}{2} dx.
We can rewrite the integral as 12x2dx\frac{1}{2} \int x^2 dx.
Using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1.
12x2dx=12x2+12+1+C=12x33+C=x36+C\frac{1}{2} \int x^2 dx = \frac{1}{2} \cdot \frac{x^{2+1}}{2+1} + C = \frac{1}{2} \cdot \frac{x^3}{3} + C = \frac{x^3}{6} + C.
b) We need to evaluate xx+1dx\int \frac{x}{x+1} dx.
We can rewrite the integrand as xx+1=x+11x+1=x+1x+11x+1=11x+1\frac{x}{x+1} = \frac{x+1-1}{x+1} = \frac{x+1}{x+1} - \frac{1}{x+1} = 1 - \frac{1}{x+1}.
Now, we can integrate:
xx+1dx=(11x+1)dx=1dx1x+1dx\int \frac{x}{x+1} dx = \int (1 - \frac{1}{x+1}) dx = \int 1 dx - \int \frac{1}{x+1} dx.
1dx=x+C1\int 1 dx = x + C_1.
1x+1dx=lnx+1+C2\int \frac{1}{x+1} dx = \ln |x+1| + C_2.
Therefore, xx+1dx=xlnx+1+C\int \frac{x}{x+1} dx = x - \ln |x+1| + C, where C=C1C2C = C_1 - C_2.
c) We need to evaluate 1(x+23)(x45)dx\int \frac{1}{(x+\frac{2}{3})(x-\frac{4}{5})} dx.
We will use partial fraction decomposition. We want to find constants AA and BB such that:
1(x+23)(x45)=Ax+23+Bx45\frac{1}{(x+\frac{2}{3})(x-\frac{4}{5})} = \frac{A}{x+\frac{2}{3}} + \frac{B}{x-\frac{4}{5}}.
Multiplying both sides by (x+23)(x45)(x+\frac{2}{3})(x-\frac{4}{5}), we get:
1=A(x45)+B(x+23)1 = A(x-\frac{4}{5}) + B(x+\frac{2}{3}).
1=Ax45A+Bx+23B1 = Ax - \frac{4}{5}A + Bx + \frac{2}{3}B.
Equating coefficients of xx: A+B=0A+B=0, so B=AB=-A.
Equating constant terms: 45A+23B=1-\frac{4}{5}A + \frac{2}{3}B = 1.
Substituting B=AB=-A, we get 45A23A=1-\frac{4}{5}A - \frac{2}{3}A = 1.
1215A1015A=1-\frac{12}{15}A - \frac{10}{15}A = 1.
2215A=1-\frac{22}{15}A = 1, so A=1522A = -\frac{15}{22}.
B=A=1522B = -A = \frac{15}{22}.
So we have 1(x+23)(x45)dx=(1522x+23+1522x45)dx\int \frac{1}{(x+\frac{2}{3})(x-\frac{4}{5})} dx = \int (\frac{-\frac{15}{22}}{x+\frac{2}{3}} + \frac{\frac{15}{22}}{x-\frac{4}{5}}) dx.
=15221x+23dx+15221x45dx= -\frac{15}{22} \int \frac{1}{x+\frac{2}{3}} dx + \frac{15}{22} \int \frac{1}{x-\frac{4}{5}} dx.
=1522lnx+23+1522lnx45+C= -\frac{15}{22} \ln |x+\frac{2}{3}| + \frac{15}{22} \ln |x-\frac{4}{5}| + C.
=1522(lnx45lnx+23)+C= \frac{15}{22} (\ln |x-\frac{4}{5}| - \ln |x+\frac{2}{3}|) + C.
=1522lnx45x+23+C= \frac{15}{22} \ln |\frac{x-\frac{4}{5}}{x+\frac{2}{3}}| + C.

3. Final Answer

a) x36+C\frac{x^3}{6} + C
b) xlnx+1+Cx - \ln |x+1| + C
c) 1522lnx45x+23+C\frac{15}{22} \ln |\frac{x-\frac{4}{5}}{x+\frac{2}{3}}| + C

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10