We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{\sqrt{x^2-x+1}-1}{\sqrt{1+x}-\sqrt{1-x}} $$
2025/6/10
1. Problem Description
We are asked to evaluate the limit
\lim_{x\to 0} \frac{\sqrt{x^2-x+1}-1}{\sqrt{1+x}-\sqrt{1-x}}
2. Solution Steps
First, we can multiply the numerator and denominator by to rationalize the numerator:
\lim_{x\to 0} \frac{\sqrt{x^2-x+1}-1}{\sqrt{1+x}-\sqrt{1-x}} \cdot \frac{\sqrt{x^2-x+1}+1}{\sqrt{x^2-x+1}+1} = \lim_{x\to 0} \frac{(x^2-x+1)-1}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{x^2-x+1}+1)}
= \lim_{x\to 0} \frac{x^2-x}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{x^2-x+1}+1)} = \lim_{x\to 0} \frac{x(x-1)}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{x^2-x+1}+1)}
Next, we can multiply the numerator and denominator by to rationalize the denominator:
\lim_{x\to 0} \frac{x(x-1)}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{x^2-x+1}+1)} \cdot \frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}
= \lim_{x\to 0} \frac{x(x-1)(\sqrt{1+x}+\sqrt{1-x})}{((1+x)-(1-x))(\sqrt{x^2-x+1}+1)} = \lim_{x\to 0} \frac{x(x-1)(\sqrt{1+x}+\sqrt{1-x})}{2x(\sqrt{x^2-x+1}+1)}
Since approaches 0 but is not equal to 0, we can cancel the terms:
\lim_{x\to 0} \frac{(x-1)(\sqrt{1+x}+\sqrt{1-x})}{2(\sqrt{x^2-x+1}+1)}
Now, we can evaluate the limit by plugging in :
\frac{(0-1)(\sqrt{1+0}+\sqrt{1-0})}{2(\sqrt{0^2-0+1}+1)} = \frac{(-1)(1+1)}{2(\sqrt{1}+1)} = \frac{-2}{2(1+1)} = \frac{-2}{4} = -\frac{1}{2}
3. Final Answer
-1/2