We need to find the limit of the following expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt{x^2 - x + 1} - 1}{\sqrt{1+x} - \sqrt{1-x}} $$

AnalysisLimitsRationalizationCalculus
2025/6/10

1. Problem Description

We need to find the limit of the following expression as xx approaches 0:
limx0x2x+111+x1x \lim_{x \to 0} \frac{\sqrt{x^2 - x + 1} - 1}{\sqrt{1+x} - \sqrt{1-x}}

2. Solution Steps

We can multiply the numerator and the denominator by the conjugates of both the numerator and the denominator to rationalize them.
First, let's multiply the numerator and the denominator by x2x+1+1\sqrt{x^2-x+1} + 1:
limx0x2x+111+x1xx2x+1+1x2x+1+1=limx0(x2x+1)1(1+x1x)(x2x+1+1)=limx0x2x(1+x1x)(x2x+1+1) \lim_{x \to 0} \frac{\sqrt{x^2 - x + 1} - 1}{\sqrt{1+x} - \sqrt{1-x}} \cdot \frac{\sqrt{x^2 - x + 1} + 1}{\sqrt{x^2 - x + 1} + 1} = \lim_{x \to 0} \frac{(x^2 - x + 1) - 1}{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{x^2 - x + 1} + 1)} = \lim_{x \to 0} \frac{x^2 - x}{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{x^2 - x + 1} + 1)}
Now we can factor out xx from the numerator:
limx0x(x1)(1+x1x)(x2x+1+1) \lim_{x \to 0} \frac{x(x - 1)}{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{x^2 - x + 1} + 1)}
Next, let's multiply the numerator and the denominator by 1+x+1x\sqrt{1+x} + \sqrt{1-x}:
limx0x(x1)(1+x1x)(x2x+1+1)1+x+1x1+x+1x=limx0x(x1)(1+x+1x)((1+x)(1x))(x2x+1+1)=limx0x(x1)(1+x+1x)(2x)(x2x+1+1) \lim_{x \to 0} \frac{x(x - 1)}{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{x^2 - x + 1} + 1)} \cdot \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} = \lim_{x \to 0} \frac{x(x - 1)(\sqrt{1+x} + \sqrt{1-x})}{((1+x) - (1-x))(\sqrt{x^2 - x + 1} + 1)} = \lim_{x \to 0} \frac{x(x - 1)(\sqrt{1+x} + \sqrt{1-x})}{(2x)(\sqrt{x^2 - x + 1} + 1)}
We can cancel out xx from the numerator and the denominator:
limx0(x1)(1+x+1x)2(x2x+1+1) \lim_{x \to 0} \frac{(x - 1)(\sqrt{1+x} + \sqrt{1-x})}{2(\sqrt{x^2 - x + 1} + 1)}
Now, we can evaluate the limit by direct substitution:
(01)(1+0+10)2(020+1+1)=(1)(1+1)2(1+1)=(1)(1+1)2(1+1)=24=12 \frac{(0 - 1)(\sqrt{1+0} + \sqrt{1-0})}{2(\sqrt{0^2 - 0 + 1} + 1)} = \frac{(-1)(\sqrt{1} + \sqrt{1})}{2(\sqrt{1} + 1)} = \frac{(-1)(1 + 1)}{2(1 + 1)} = \frac{-2}{4} = -\frac{1}{2}

3. Final Answer

limx0x2x+111+x1x=12 \lim_{x \to 0} \frac{\sqrt{x^2 - x + 1} - 1}{\sqrt{1+x} - \sqrt{1-x}} = -\frac{1}{2}

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10