a) Differentiation from first principles:
The definition of the derivative from first principles is:
f′(x)=limh→0hf(x+h)−f(x) Given y=f(x)=4x2−2x, then f(x+h)=4(x+h)2−2(x+h)=4(x2+2xh+h2)−2x−2h=4x2+8xh+4h2−2x−2h. f(x+h)−f(x)=(4x2+8xh+4h2−2x−2h)−(4x2−2x)=8xh+4h2−2h hf(x+h)−f(x)=h8xh+4h2−2h=8x+4h−2 f′(x)=limh→0(8x+4h−2)=8x−2 b) Differentiation of f(x)=6+x31 and gradient at x=2: First, rewrite the function as f(x)=6+x−3. Then differentiate:
f′(x)=0+(−3)x−4=−3x−4=−x43 Now, find the gradient at x=2: f′(2)=−243=−163 c) Differentiation of 2x3cos(3x): Use the product rule: dxd(uv)=u′v+uv′. Let u=2x3 and v=cos(3x). Then u′=6x2 and v′=−3sin(3x). So, dxd(2x3cos(3x))=(6x2)(cos(3x))+(2x3)(−3sin(3x))=6x2cos(3x)−6x3sin(3x) d) Differentiation of x2+12x: Use the quotient rule: dxd(vu)=v2u′v−uv′. Let u=2x and v=x2+1. Then u′=2 and v′=2x. So, dxd(x2+12x)=(x2+1)2(2)(x2+1)−(2x)(2x)=(x2+1)22x2+2−4x2=(x2+1)22−2x2=(x2+1)22(1−x2)