We are asked to evaluate the indefinite integral of $\sin^2 x$. That is, we need to find $\int \sin^2 x \, dx$.

AnalysisIntegrationTrigonometric IntegralsIndefinite IntegralTrigonometric Identities
2025/6/10

1. Problem Description

We are asked to evaluate the indefinite integral of sin2x\sin^2 x. That is, we need to find
sin2xdx\int \sin^2 x \, dx.

2. Solution Steps

We will use the trigonometric identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2} to simplify the integral.
sin2xdx=1cos(2x)2dx\int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx
=12(1cos(2x))dx= \frac{1}{2} \int (1 - \cos(2x)) \, dx
=12(1dxcos(2x)dx)= \frac{1}{2} \left( \int 1 \, dx - \int \cos(2x) \, dx \right)
=12(x12sin(2x))+C= \frac{1}{2} \left( x - \frac{1}{2} \sin(2x) \right) + C
=12x14sin(2x)+C= \frac{1}{2} x - \frac{1}{4} \sin(2x) + C
We can verify this result by differentiating:
ddx(12x14sin(2x)+C)=1214(2cos(2x))=1212cos(2x)=1cos(2x)2=sin2x\frac{d}{dx} \left( \frac{1}{2} x - \frac{1}{4} \sin(2x) + C \right) = \frac{1}{2} - \frac{1}{4} (2\cos(2x)) = \frac{1}{2} - \frac{1}{2} \cos(2x) = \frac{1 - \cos(2x)}{2} = \sin^2 x.

3. Final Answer

sin2xdx=12x14sin(2x)+C\int \sin^2 x \, dx = \frac{1}{2} x - \frac{1}{4} \sin(2x) + C

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10