Determine whether the series $\sum_{n=1}^{\infty} \frac{3n+1}{n^3+4}$ converges or diverges.

AnalysisSeries ConvergenceLimit Comparison Testp-series
2025/3/9

1. Problem Description

Determine whether the series n=13n+1n3+4\sum_{n=1}^{\infty} \frac{3n+1}{n^3+4} converges or diverges.

2. Solution Steps

We will use the Limit Comparison Test. We need to choose a comparison series. For large nn, the term 3n+1n3+4\frac{3n+1}{n^3+4} behaves like 3nn3=3n2\frac{3n}{n^3} = \frac{3}{n^2}. Therefore, we will compare the given series with n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2}, which is a convergent pp-series with p=2>1p=2 > 1.
Let an=3n+1n3+4a_n = \frac{3n+1}{n^3+4} and bn=1n2b_n = \frac{1}{n^2}. We compute the limit:
limnanbn=limn3n+1n3+41n2=limn(3n+1)n2n3+4=limn3n3+n2n3+4 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{3n+1}{n^3+4}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{(3n+1)n^2}{n^3+4} = \lim_{n \to \infty} \frac{3n^3+n^2}{n^3+4}
Divide both the numerator and denominator by n3n^3:
limn3+1n1+4n3=3+01+0=3 \lim_{n \to \infty} \frac{3+\frac{1}{n}}{1+\frac{4}{n^3}} = \frac{3+0}{1+0} = 3
Since the limit is 3, which is a positive finite number, the Limit Comparison Test tells us that n=1an\sum_{n=1}^{\infty} a_n and n=1bn\sum_{n=1}^{\infty} b_n either both converge or both diverge. Since n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2} converges (it is a pp-series with p=2>1p=2>1), the given series n=13n+1n3+4\sum_{n=1}^{\infty} \frac{3n+1}{n^3+4} also converges.

3. Final Answer

The series converges.

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1