数列 $\{a_n\}$ が、$a_1 = 3$ および漸化式 $2a_{n+1} - 2a_n = 4n^2 + 2n - 1$ を満たすとき、一般項 $a_n$ を求める問題です。代数学数列漸化式一般項2025/6/151. 問題の内容数列 {an}\{a_n\}{an} が、a1=3a_1 = 3a1=3 および漸化式 2an+1−2an=4n2+2n−12a_{n+1} - 2a_n = 4n^2 + 2n - 12an+1−2an=4n2+2n−1 を満たすとき、一般項 ana_nan を求める問題です。2. 解き方の手順まず、漸化式を整理します。2an+1−2an=4n2+2n−12a_{n+1} - 2a_n = 4n^2 + 2n - 12an+1−2an=4n2+2n−1両辺を2で割ると、an+1−an=2n2+n−12a_{n+1} - a_n = 2n^2 + n - \frac{1}{2}an+1−an=2n2+n−21次に、n≥2n \ge 2n≥2 のとき、ana_nan を a1a_1a1 との差で表します。an−a1=∑k=1n−1(ak+1−ak)a_n - a_1 = \sum_{k=1}^{n-1} (a_{k+1} - a_k)an−a1=∑k=1n−1(ak+1−ak)an=a1+∑k=1n−1(2k2+k−12)a_n = a_1 + \sum_{k=1}^{n-1} (2k^2 + k - \frac{1}{2})an=a1+∑k=1n−1(2k2+k−21)a1=3a_1 = 3a1=3 を代入し、∑\sum∑ を計算します。an=3+∑k=1n−1(2k2+k−12)a_n = 3 + \sum_{k=1}^{n-1} (2k^2 + k - \frac{1}{2})an=3+∑k=1n−1(2k2+k−21)=3+2∑k=1n−1k2+∑k=1n−1k−12∑k=1n−11= 3 + 2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k - \frac{1}{2}\sum_{k=1}^{n-1} 1=3+2∑k=1n−1k2+∑k=1n−1k−21∑k=1n−11=3+2(n−1)n(2n−1)6+(n−1)n2−12(n−1)= 3 + 2\frac{(n-1)n(2n-1)}{6} + \frac{(n-1)n}{2} - \frac{1}{2}(n-1)=3+26(n−1)n(2n−1)+2(n−1)n−21(n−1)=3+(n−1)n(2n−1)3+(n−1)n2−n−12= 3 + \frac{(n-1)n(2n-1)}{3} + \frac{(n-1)n}{2} - \frac{n-1}{2}=3+3(n−1)n(2n−1)+2(n−1)n−2n−1=3+2n3−3n2+n3+n2−n2−n−12= 3 + \frac{2n^3 - 3n^2 + n}{3} + \frac{n^2 - n}{2} - \frac{n-1}{2}=3+32n3−3n2+n+2n2−n−2n−1=3+2(2n3−3n2+n)+3(n2−n)−3(n−1)6= 3 + \frac{2(2n^3 - 3n^2 + n) + 3(n^2 - n) - 3(n-1)}{6}=3+62(2n3−3n2+n)+3(n2−n)−3(n−1)=3+4n3−6n2+2n+3n2−3n−3n+36= 3 + \frac{4n^3 - 6n^2 + 2n + 3n^2 - 3n - 3n + 3}{6}=3+64n3−6n2+2n+3n2−3n−3n+3=3+4n3−3n2−4n+36= 3 + \frac{4n^3 - 3n^2 - 4n + 3}{6}=3+64n3−3n2−4n+3=18+4n3−3n2−4n+36= \frac{18 + 4n^3 - 3n^2 - 4n + 3}{6}=618+4n3−3n2−4n+3=4n3−3n2−4n+216= \frac{4n^3 - 3n^2 - 4n + 21}{6}=64n3−3n2−4n+21n=1n=1n=1 のとき、a1=4−3−4+216=186=3a_1 = \frac{4 - 3 - 4 + 21}{6} = \frac{18}{6} = 3a1=64−3−4+21=618=3 となり、条件を満たします。3. 最終的な答えan=4n3−3n2−4n+216a_n = \frac{4n^3 - 3n^2 - 4n + 21}{6}an=64n3−3n2−4n+21