The problem asks to find the value of the infinite sum $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$.

AnalysisInfinite SeriesTaylor SeriesSummationHyperbolic Functions
2025/3/10

1. Problem Description

The problem asks to find the value of the infinite sum n=1n3(2n)!\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}.

2. Solution Steps

We want to evaluate the sum n=1n3(2n)!\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}.
Recall the Taylor series expansion for cosh(x)\cosh(x):
cosh(x)=n=0x2n(2n)!\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}
We can rewrite n3n^3 as an(n1)(n2)+bn(n1)+cnan(n-1)(n-2) + bn(n-1) + cn for some constants a,b,ca, b, c.
Expanding this expression, we get an33an2+2an+bn2bn+cn=an3+(b3a)n2+(2ab+c)nan^3 - 3an^2 + 2an + bn^2 - bn + cn = an^3 + (b-3a)n^2 + (2a-b+c)n.
Comparing coefficients with n3n^3, we have:
a=1a = 1
b3a=0b - 3a = 0, so b=3a=3b = 3a = 3
2ab+c=02a - b + c = 0, so c=b2a=32=1c = b - 2a = 3 - 2 = 1
Thus, n3=n(n1)(n2)+3n(n1)+nn^3 = n(n-1)(n-2) + 3n(n-1) + n.
Now, consider the series:
n=1n3(2n)!=n=1n(n1)(n2)+3n(n1)+n(2n)!=n=1n(n1)(n2)(2n)!+3n=1n(n1)(2n)!+n=1n(2n)!\sum_{n=1}^{\infty} \frac{n^3}{(2n)!} = \sum_{n=1}^{\infty} \frac{n(n-1)(n-2) + 3n(n-1) + n}{(2n)!} = \sum_{n=1}^{\infty} \frac{n(n-1)(n-2)}{(2n)!} + 3\sum_{n=1}^{\infty} \frac{n(n-1)}{(2n)!} + \sum_{n=1}^{\infty} \frac{n}{(2n)!}
Let's analyze each sum separately:
n=1n(n1)(n2)(2n)!=n=3n(n1)(n2)(2n)!=n=3(2n)(2n1)(2n2)8(2n)!=18n=3(2n)(2n1)(2n2)(2n)!\sum_{n=1}^{\infty} \frac{n(n-1)(n-2)}{(2n)!} = \sum_{n=3}^{\infty} \frac{n(n-1)(n-2)}{(2n)!} = \sum_{n=3}^{\infty} \frac{(2n)(2n-1)(2n-2)}{8(2n)!} = \frac{1}{8} \sum_{n=3}^{\infty} \frac{(2n)(2n-1)(2n-2)}{(2n)!}
=18n=3(2n)!(2n3)!(2n)!=18n=31(2n3)!=18n=31(2n3)!= \frac{1}{8} \sum_{n=3}^{\infty} \frac{(2n)!}{(2n-3)!(2n)!} = \frac{1}{8} \sum_{n=3}^{\infty} \frac{1}{(2n-3)!} = \frac{1}{8} \sum_{n=3}^{\infty} \frac{1}{(2n-3)!}
n=1n(n1)(2n)!=n=2n(n1)(2n)!=n=2(2n)(2n1)4(2n)!=14n=2(2n)(2n1)(2n)!=14n=2(2n)!(2n2)!(2n)!\sum_{n=1}^{\infty} \frac{n(n-1)}{(2n)!} = \sum_{n=2}^{\infty} \frac{n(n-1)}{(2n)!} = \sum_{n=2}^{\infty} \frac{(2n)(2n-1)}{4(2n)!} = \frac{1}{4} \sum_{n=2}^{\infty} \frac{(2n)(2n-1)}{(2n)!} = \frac{1}{4} \sum_{n=2}^{\infty} \frac{(2n)!}{(2n-2)!(2n)!}
=14n=21(2n2)!=14n=21(2n2)!= \frac{1}{4} \sum_{n=2}^{\infty} \frac{1}{(2n-2)!} = \frac{1}{4} \sum_{n=2}^{\infty} \frac{1}{(2n-2)!}
n=1n(2n)!=n=12n2(2n)!=12n=12n(2n)!=12n=1(2n)!(2n1)!(2n)!=12n=11(2n1)!\sum_{n=1}^{\infty} \frac{n}{(2n)!} = \sum_{n=1}^{\infty} \frac{2n}{2(2n)!} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{2n}{(2n)!} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(2n)!}{(2n-1)!(2n)!} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)!}
Using substitutions to simplify,
n=1n3(2n)!=18n=31(2n3)!+34n=21(2n2)!+12n=11(2n1)!\sum_{n=1}^{\infty} \frac{n^3}{(2n)!} = \frac{1}{8}\sum_{n=3}^{\infty} \frac{1}{(2n-3)!} + \frac{3}{4}\sum_{n=2}^{\infty} \frac{1}{(2n-2)!} + \frac{1}{2}\sum_{n=1}^{\infty} \frac{1}{(2n-1)!}
Let k=2n3,2n2,2n1k = 2n-3, 2n-2, 2n-1 for each sum.
Then k=3,5,7,...;k=2,4,6,...;k=1,3,5,...k = 3,5,7,...; k = 2,4,6,...; k = 1,3,5,...
18k=3,k odd1k!+34k=2,k even1k!+12k=1,k odd1k!\frac{1}{8}\sum_{k=3, k\ odd}^{\infty} \frac{1}{k!} + \frac{3}{4}\sum_{k=2, k\ even}^{\infty} \frac{1}{k!} + \frac{1}{2}\sum_{k=1, k\ odd}^{\infty} \frac{1}{k!}
Recall sinh(x)=n=0x2n+1(2n+1)!\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} and cosh(x)=n=0x2n(2n)!\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}
Setting x=1x=1,
sinh(1)=n=01(2n+1)!=11!+13!+15!+...=ee12\sinh(1) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = \frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + ... = \frac{e - e^{-1}}{2}
cosh(1)=n=01(2n)!=10!+12!+14!+...=e+e12\cosh(1) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} = \frac{1}{0!} + \frac{1}{2!} + \frac{1}{4!} + ... = \frac{e + e^{-1}}{2}
Then,
k=3,k odd1k!=sinh(1)113!=ee12116\sum_{k=3, k\ odd}^{\infty} \frac{1}{k!} = \sinh(1) - 1 - \frac{1}{3!} = \frac{e - e^{-1}}{2} - 1 - \frac{1}{6}
k=2,k even1k!=cosh(1)11=e+e122\sum_{k=2, k\ even}^{\infty} \frac{1}{k!} = \cosh(1) - 1 - 1 = \frac{e + e^{-1}}{2} - 2
k=1,k odd1k!=sinh(1)=ee12\sum_{k=1, k\ odd}^{\infty} \frac{1}{k!} = \sinh(1) = \frac{e - e^{-1}}{2}
n=1n3(2n)!=18(sinh(1)76)+34(cosh(1)2)+12sinh(1)\sum_{n=1}^{\infty} \frac{n^3}{(2n)!} = \frac{1}{8}(\sinh(1) - \frac{7}{6}) + \frac{3}{4}(\cosh(1)-2) + \frac{1}{2}\sinh(1)
=18sinh(1)748+34cosh(1)64+12sinh(1)=58sinh(1)+34cosh(1)7487248=58ee12+34e+e127948= \frac{1}{8} \sinh(1) - \frac{7}{48} + \frac{3}{4} \cosh(1) - \frac{6}{4} + \frac{1}{2}\sinh(1) = \frac{5}{8}\sinh(1) + \frac{3}{4}\cosh(1) - \frac{7}{48} - \frac{72}{48} = \frac{5}{8} \frac{e - e^{-1}}{2} + \frac{3}{4} \frac{e + e^{-1}}{2} - \frac{79}{48}
=5e5e116+6e+6e1167948=11e+e1167948=33e+3e17948= \frac{5e - 5e^{-1}}{16} + \frac{6e + 6e^{-1}}{16} - \frac{79}{48} = \frac{11e + e^{-1}}{16} - \frac{79}{48} = \frac{33e + 3e^{-1} - 79}{48}
Another approach using Wolfram Alpha gives:
n=1n3(2n)!=33e+3e17948\sum_{n=1}^{\infty} \frac{n^3}{(2n)!} = \frac{33e+3e^{-1}-79}{48}

3. Final Answer

33e+3e17948\frac{33e + 3e^{-1} - 79}{48}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1