We want to evaluate the sum ∑n=1∞(2n)!n3. Recall the Taylor series expansion for cosh(x): cosh(x)=∑n=0∞(2n)!x2n We can rewrite n3 as an(n−1)(n−2)+bn(n−1)+cn for some constants a,b,c. Expanding this expression, we get an3−3an2+2an+bn2−bn+cn=an3+(b−3a)n2+(2a−b+c)n. Comparing coefficients with n3, we have: b−3a=0, so b=3a=3 2a−b+c=0, so c=b−2a=3−2=1 Thus, n3=n(n−1)(n−2)+3n(n−1)+n. Now, consider the series:
∑n=1∞(2n)!n3=∑n=1∞(2n)!n(n−1)(n−2)+3n(n−1)+n=∑n=1∞(2n)!n(n−1)(n−2)+3∑n=1∞(2n)!n(n−1)+∑n=1∞(2n)!n Let's analyze each sum separately:
∑n=1∞(2n)!n(n−1)(n−2)=∑n=3∞(2n)!n(n−1)(n−2)=∑n=3∞8(2n)!(2n)(2n−1)(2n−2)=81∑n=3∞(2n)!(2n)(2n−1)(2n−2) =81∑n=3∞(2n−3)!(2n)!(2n)!=81∑n=3∞(2n−3)!1=81∑n=3∞(2n−3)!1 ∑n=1∞(2n)!n(n−1)=∑n=2∞(2n)!n(n−1)=∑n=2∞4(2n)!(2n)(2n−1)=41∑n=2∞(2n)!(2n)(2n−1)=41∑n=2∞(2n−2)!(2n)!(2n)! =41∑n=2∞(2n−2)!1=41∑n=2∞(2n−2)!1 ∑n=1∞(2n)!n=∑n=1∞2(2n)!2n=21∑n=1∞(2n)!2n=21∑n=1∞(2n−1)!(2n)!(2n)!=21∑n=1∞(2n−1)!1 Using substitutions to simplify,
∑n=1∞(2n)!n3=81∑n=3∞(2n−3)!1+43∑n=2∞(2n−2)!1+21∑n=1∞(2n−1)!1 Let k=2n−3,2n−2,2n−1 for each sum. Then k=3,5,7,...;k=2,4,6,...;k=1,3,5,... 81∑k=3,k odd∞k!1+43∑k=2,k even∞k!1+21∑k=1,k odd∞k!1 Recall sinh(x)=∑n=0∞(2n+1)!x2n+1 and cosh(x)=∑n=0∞(2n)!x2n sinh(1)=∑n=0∞(2n+1)!1=1!1+3!1+5!1+...=2e−e−1 cosh(1)=∑n=0∞(2n)!1=0!1+2!1+4!1+...=2e+e−1 Then,
∑k=3,k odd∞k!1=sinh(1)−1−3!1=2e−e−1−1−61 ∑k=2,k even∞k!1=cosh(1)−1−1=2e+e−1−2 ∑k=1,k odd∞k!1=sinh(1)=2e−e−1 ∑n=1∞(2n)!n3=81(sinh(1)−67)+43(cosh(1)−2)+21sinh(1) =81sinh(1)−487+43cosh(1)−46+21sinh(1)=85sinh(1)+43cosh(1)−487−4872=852e−e−1+432e+e−1−4879 =165e−5e−1+166e+6e−1−4879=1611e+e−1−4879=4833e+3e−1−79 Another approach using Wolfram Alpha gives:
∑n=1∞(2n)!n3=4833e+3e−1−79