We need to find the indefinite integral of $e^{2x} \sin x$ with respect to $x$.

AnalysisIntegrationIntegration by PartsIndefinite IntegralExponential FunctionTrigonometric Function
2025/3/6

1. Problem Description

We need to find the indefinite integral of e2xsinxe^{2x} \sin x with respect to xx.

2. Solution Steps

We will use integration by parts twice. The formula for integration by parts is:
udv=uvvdu\int u \, dv = uv - \int v \, du
First, let u=sinxu = \sin x and dv=e2xdxdv = e^{2x} dx. Then du=cosxdxdu = \cos x \, dx and v=e2xdx=12e2xv = \int e^{2x} dx = \frac{1}{2}e^{2x}.
e2xsinxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x \, dx
e2xsinxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \int e^{2x} \cos x \, dx
Now, let's evaluate e2xcosxdx\int e^{2x} \cos x \, dx using integration by parts again. Let u=cosxu = \cos x and dv=e2xdxdv = e^{2x} dx. Then du=sinxdxdu = -\sin x \, dx and v=12e2xv = \frac{1}{2}e^{2x}.
e2xcosxdx=12e2xcosx12e2x(sinx)dx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x - \int \frac{1}{2} e^{2x} (-\sin x) \, dx
e2xcosxdx=12e2xcosx+12e2xsinxdx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx
Substitute this back into the first equation:
e2xsinxdx=12e2xsinx12(12e2xcosx+12e2xsinxdx)\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \left( \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx \right)
e2xsinxdx=12e2xsinx14e2xcosx14e2xsinxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \frac{1}{4} \int e^{2x} \sin x \, dx
Now, let I=e2xsinxdxI = \int e^{2x} \sin x \, dx.
I=12e2xsinx14e2xcosx14II = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \frac{1}{4} I
I+14I=12e2xsinx14e2xcosxI + \frac{1}{4} I = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x
54I=12e2xsinx14e2xcosx\frac{5}{4} I = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x
I=45(12e2xsinx14e2xcosx)I = \frac{4}{5} \left( \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x \right)
I=25e2xsinx15e2xcosxI = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x
I=15e2x(2sinxcosx)+CI = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C

3. Final Answer

15e2x(2sinxcosx)+C\frac{1}{5} e^{2x} (2 \sin x - \cos x) + C

Related problems in "Analysis"

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusVolume of RevolutionIntegrationTrigonometryDefinite IntegralsDisk Method
2025/4/25

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusIntegrationVolume of RevolutionDisk MethodTrigonometric Functions
2025/4/25

We are given two functions, $g(x) = -\frac{1}{x} + \ln x$ defined on $(0, +\infty)$ and $f(x) = x - ...

LimitsDerivativesFunction AnalysisMonotonicityIntermediate Value TheoremLogarithmic Functions
2025/4/25

We are given the function $f(x) = \ln|x^2-1|$. We need to find the domain, intercepts, limits, deriv...

CalculusDomainLimitsDerivativesIncreasing/Decreasing IntervalsConcavityGraphing
2025/4/25

We need to find the first-order partial derivatives for the function $f(x, y) = \frac{x^2 - y^2}{xy}...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/25

The problem asks us to analyze the function $f(u, v) = e^{uv}$.

Partial DerivativesChain RuleMultivariable CalculusExponential Function
2025/4/25

The problem asks to analyze the function $f(x, y) = e^x \cos y$.

Partial DerivativesMultivariable CalculusLaplacianHarmonic Function
2025/4/25

We are asked to find the partial derivatives of the function $f(x, y) = (4x - y^2)^{3/2}$.

Partial DerivativesChain RuleMultivariable Calculus
2025/4/25

The problem asks us to determine the natural domain of the function $f(x, y)$ given some example fun...

FunctionsDomainMultivariable FunctionsAmbiguity
2025/4/24

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24