We will use integration by parts twice. The formula for integration by parts is:
∫udv=uv−∫vdu First, let u=sinx and dv=e2xdx. Then du=cosxdx and v=∫e2xdx=21e2x. ∫e2xsinxdx=21e2xsinx−∫21e2xcosxdx ∫e2xsinxdx=21e2xsinx−21∫e2xcosxdx Now, let's evaluate ∫e2xcosxdx using integration by parts again. Let u=cosx and dv=e2xdx. Then du=−sinxdx and v=21e2x. ∫e2xcosxdx=21e2xcosx−∫21e2x(−sinx)dx ∫e2xcosxdx=21e2xcosx+21∫e2xsinxdx Substitute this back into the first equation:
∫e2xsinxdx=21e2xsinx−21(21e2xcosx+21∫e2xsinxdx) ∫e2xsinxdx=21e2xsinx−41e2xcosx−41∫e2xsinxdx Now, let I=∫e2xsinxdx. I=21e2xsinx−41e2xcosx−41I I+41I=21e2xsinx−41e2xcosx 45I=21e2xsinx−41e2xcosx I=54(21e2xsinx−41e2xcosx) I=52e2xsinx−51e2xcosx I=51e2x(2sinx−cosx)+C