We need to find the indefinite integral of $e^{2x} \sin x$ with respect to $x$.

AnalysisIntegrationIntegration by PartsIndefinite IntegralExponential FunctionTrigonometric Function
2025/3/6

1. Problem Description

We need to find the indefinite integral of e2xsinxe^{2x} \sin x with respect to xx.

2. Solution Steps

We will use integration by parts twice. The formula for integration by parts is:
udv=uvvdu\int u \, dv = uv - \int v \, du
First, let u=sinxu = \sin x and dv=e2xdxdv = e^{2x} dx. Then du=cosxdxdu = \cos x \, dx and v=e2xdx=12e2xv = \int e^{2x} dx = \frac{1}{2}e^{2x}.
e2xsinxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x \, dx
e2xsinxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \int e^{2x} \cos x \, dx
Now, let's evaluate e2xcosxdx\int e^{2x} \cos x \, dx using integration by parts again. Let u=cosxu = \cos x and dv=e2xdxdv = e^{2x} dx. Then du=sinxdxdu = -\sin x \, dx and v=12e2xv = \frac{1}{2}e^{2x}.
e2xcosxdx=12e2xcosx12e2x(sinx)dx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x - \int \frac{1}{2} e^{2x} (-\sin x) \, dx
e2xcosxdx=12e2xcosx+12e2xsinxdx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx
Substitute this back into the first equation:
e2xsinxdx=12e2xsinx12(12e2xcosx+12e2xsinxdx)\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \left( \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx \right)
e2xsinxdx=12e2xsinx14e2xcosx14e2xsinxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \frac{1}{4} \int e^{2x} \sin x \, dx
Now, let I=e2xsinxdxI = \int e^{2x} \sin x \, dx.
I=12e2xsinx14e2xcosx14II = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \frac{1}{4} I
I+14I=12e2xsinx14e2xcosxI + \frac{1}{4} I = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x
54I=12e2xsinx14e2xcosx\frac{5}{4} I = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x
I=45(12e2xsinx14e2xcosx)I = \frac{4}{5} \left( \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x \right)
I=25e2xsinx15e2xcosxI = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x
I=15e2x(2sinxcosx)+CI = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C

3. Final Answer

15e2x(2sinxcosx)+C\frac{1}{5} e^{2x} (2 \sin x - \cos x) + C

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7