The problem asks us to find $\frac{dy}{dx}$ for three different functions. i. $y = x^2 - 3x + 4$, using first principles. ii. $y = \frac{4x^2 - x + 3x^{-1}}{\sqrt{x}}$ iii. $y = e^{2x} \sin 2x$

AnalysisDifferentiationCalculusDerivativesProduct RuleFirst Principles
2025/3/30

1. Problem Description

The problem asks us to find dydx\frac{dy}{dx} for three different functions.
i. y=x23x+4y = x^2 - 3x + 4, using first principles.
ii. y=4x2x+3x1xy = \frac{4x^2 - x + 3x^{-1}}{\sqrt{x}}
iii. y=e2xsin2xy = e^{2x} \sin 2x

2. Solution Steps

i. y=x23x+4y = x^2 - 3x + 4
Using first principles, we have:
dydx=limh0f(x+h)f(x)h\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
f(x+h)=(x+h)23(x+h)+4=x2+2xh+h23x3h+4f(x+h) = (x+h)^2 - 3(x+h) + 4 = x^2 + 2xh + h^2 - 3x - 3h + 4
f(x)=x23x+4f(x) = x^2 - 3x + 4
f(x+h)f(x)=(x2+2xh+h23x3h+4)(x23x+4)=2xh+h23hf(x+h) - f(x) = (x^2 + 2xh + h^2 - 3x - 3h + 4) - (x^2 - 3x + 4) = 2xh + h^2 - 3h
f(x+h)f(x)h=2xh+h23hh=2x+h3\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - 3h}{h} = 2x + h - 3
dydx=limh0(2x+h3)=2x3\frac{dy}{dx} = \lim_{h \to 0} (2x + h - 3) = 2x - 3
ii. y=4x2x+3x1x=4x2x+3xx12=4x2x12xx12+3x1x12=4x32x12+3x32y = \frac{4x^2 - x + 3x^{-1}}{\sqrt{x}} = \frac{4x^2 - x + \frac{3}{x}}{x^{\frac{1}{2}}} = \frac{4x^2}{x^{\frac{1}{2}}} - \frac{x}{x^{\frac{1}{2}}} + \frac{3x^{-1}}{x^{\frac{1}{2}}} = 4x^{\frac{3}{2}} - x^{\frac{1}{2}} + 3x^{-\frac{3}{2}}
dydx=432x1212x12+3(32)x52=6x1212x1292x52=6x12x92x52\frac{dy}{dx} = 4 \cdot \frac{3}{2} x^{\frac{1}{2}} - \frac{1}{2} x^{-\frac{1}{2}} + 3 \cdot (-\frac{3}{2}) x^{-\frac{5}{2}} = 6x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}} - \frac{9}{2} x^{-\frac{5}{2}} = 6\sqrt{x} - \frac{1}{2\sqrt{x}} - \frac{9}{2x^{\frac{5}{2}}}
dydx=6x12x92x2x=12x3x292x2x\frac{dy}{dx} = 6\sqrt{x} - \frac{1}{2\sqrt{x}} - \frac{9}{2x^2\sqrt{x}} = \frac{12x^3 - x^2 - 9}{2x^2\sqrt{x}}
iii. y=e2xsin2xy = e^{2x} \sin 2x
Using the product rule: ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}
u=e2xu = e^{2x}, v=sin2xv = \sin 2x
dudx=2e2x\frac{du}{dx} = 2e^{2x}, dvdx=2cos2x\frac{dv}{dx} = 2\cos 2x
dydx=e2x(2cos2x)+(sin2x)(2e2x)=2e2xcos2x+2e2xsin2x=2e2x(cos2x+sin2x)\frac{dy}{dx} = e^{2x}(2\cos 2x) + (\sin 2x)(2e^{2x}) = 2e^{2x}\cos 2x + 2e^{2x}\sin 2x = 2e^{2x}(\cos 2x + \sin 2x)

3. Final Answer

i. dydx=2x3\frac{dy}{dx} = 2x - 3
ii. dydx=6x12x92x52=12x3x292x2x\frac{dy}{dx} = 6\sqrt{x} - \frac{1}{2\sqrt{x}} - \frac{9}{2x^{\frac{5}{2}}} = \frac{12x^3 - x^2 - 9}{2x^2\sqrt{x}}
iii. dydx=2e2x(cos2x+sin2x)\frac{dy}{dx} = 2e^{2x}(\cos 2x + \sin 2x)

Related problems in "Analysis"

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1