i. y = x 2 − 3 x + 4 y = x^2 - 3x + 4 y = x 2 − 3 x + 4 Using first principles, we have:
d y d x = lim h → 0 f ( x + h ) − f ( x ) h \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} d x d y = lim h → 0 h f ( x + h ) − f ( x )
f ( x + h ) = ( x + h ) 2 − 3 ( x + h ) + 4 = x 2 + 2 x h + h 2 − 3 x − 3 h + 4 f(x+h) = (x+h)^2 - 3(x+h) + 4 = x^2 + 2xh + h^2 - 3x - 3h + 4 f ( x + h ) = ( x + h ) 2 − 3 ( x + h ) + 4 = x 2 + 2 x h + h 2 − 3 x − 3 h + 4 f ( x ) = x 2 − 3 x + 4 f(x) = x^2 - 3x + 4 f ( x ) = x 2 − 3 x + 4
f ( x + h ) − f ( x ) = ( x 2 + 2 x h + h 2 − 3 x − 3 h + 4 ) − ( x 2 − 3 x + 4 ) = 2 x h + h 2 − 3 h f(x+h) - f(x) = (x^2 + 2xh + h^2 - 3x - 3h + 4) - (x^2 - 3x + 4) = 2xh + h^2 - 3h f ( x + h ) − f ( x ) = ( x 2 + 2 x h + h 2 − 3 x − 3 h + 4 ) − ( x 2 − 3 x + 4 ) = 2 x h + h 2 − 3 h
f ( x + h ) − f ( x ) h = 2 x h + h 2 − 3 h h = 2 x + h − 3 \frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - 3h}{h} = 2x + h - 3 h f ( x + h ) − f ( x ) = h 2 x h + h 2 − 3 h = 2 x + h − 3
d y d x = lim h → 0 ( 2 x + h − 3 ) = 2 x − 3 \frac{dy}{dx} = \lim_{h \to 0} (2x + h - 3) = 2x - 3 d x d y = lim h → 0 ( 2 x + h − 3 ) = 2 x − 3
ii. y = 4 x 2 − x + 3 x − 1 x = 4 x 2 − x + 3 x x 1 2 = 4 x 2 x 1 2 − x x 1 2 + 3 x − 1 x 1 2 = 4 x 3 2 − x 1 2 + 3 x − 3 2 y = \frac{4x^2 - x + 3x^{-1}}{\sqrt{x}} = \frac{4x^2 - x + \frac{3}{x}}{x^{\frac{1}{2}}} = \frac{4x^2}{x^{\frac{1}{2}}} - \frac{x}{x^{\frac{1}{2}}} + \frac{3x^{-1}}{x^{\frac{1}{2}}} = 4x^{\frac{3}{2}} - x^{\frac{1}{2}} + 3x^{-\frac{3}{2}} y = x 4 x 2 − x + 3 x − 1 = x 2 1 4 x 2 − x + x 3 = x 2 1 4 x 2 − x 2 1 x + x 2 1 3 x − 1 = 4 x 2 3 − x 2 1 + 3 x − 2 3
d y d x = 4 ⋅ 3 2 x 1 2 − 1 2 x − 1 2 + 3 ⋅ ( − 3 2 ) x − 5 2 = 6 x 1 2 − 1 2 x − 1 2 − 9 2 x − 5 2 = 6 x − 1 2 x − 9 2 x 5 2 \frac{dy}{dx} = 4 \cdot \frac{3}{2} x^{\frac{1}{2}} - \frac{1}{2} x^{-\frac{1}{2}} + 3 \cdot (-\frac{3}{2}) x^{-\frac{5}{2}} = 6x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}} - \frac{9}{2} x^{-\frac{5}{2}} = 6\sqrt{x} - \frac{1}{2\sqrt{x}} - \frac{9}{2x^{\frac{5}{2}}} d x d y = 4 ⋅ 2 3 x 2 1 − 2 1 x − 2 1 + 3 ⋅ ( − 2 3 ) x − 2 5 = 6 x 2 1 − 2 1 x − 2 1 − 2 9 x − 2 5 = 6 x − 2 x 1 − 2 x 2 5 9 d y d x = 6 x − 1 2 x − 9 2 x 2 x = 12 x 3 − x 2 − 9 2 x 2 x \frac{dy}{dx} = 6\sqrt{x} - \frac{1}{2\sqrt{x}} - \frac{9}{2x^2\sqrt{x}} = \frac{12x^3 - x^2 - 9}{2x^2\sqrt{x}} d x d y = 6 x − 2 x 1 − 2 x 2 x 9 = 2 x 2 x 12 x 3 − x 2 − 9
iii. y = e 2 x sin 2 x y = e^{2x} \sin 2x y = e 2 x sin 2 x Using the product rule: d d x ( u v ) = u d v d x + v d u d x \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} d x d ( uv ) = u d x d v + v d x d u u = e 2 x u = e^{2x} u = e 2 x , v = sin 2 x v = \sin 2x v = sin 2 x d u d x = 2 e 2 x \frac{du}{dx} = 2e^{2x} d x d u = 2 e 2 x , d v d x = 2 cos 2 x \frac{dv}{dx} = 2\cos 2x d x d v = 2 cos 2 x
d y d x = e 2 x ( 2 cos 2 x ) + ( sin 2 x ) ( 2 e 2 x ) = 2 e 2 x cos 2 x + 2 e 2 x sin 2 x = 2 e 2 x ( cos 2 x + sin 2 x ) \frac{dy}{dx} = e^{2x}(2\cos 2x) + (\sin 2x)(2e^{2x}) = 2e^{2x}\cos 2x + 2e^{2x}\sin 2x = 2e^{2x}(\cos 2x + \sin 2x) d x d y = e 2 x ( 2 cos 2 x ) + ( sin 2 x ) ( 2 e 2 x ) = 2 e 2 x cos 2 x + 2 e 2 x sin 2 x = 2 e 2 x ( cos 2 x + sin 2 x )