Let I=∫0∞(1+x)(π2+(lnx)2)dx. Let x=u1, so dx=−u21du. When x=0, u=∞, and when x=∞, u=0. Then, I=∫∞0(1+u1)(π2+(ln(u1))2)−u21du=∫∞0(uu+1)(π2+(−lnu)2)−u21du=∫0∞(uu+1)(π2+(lnu)2)u21du=∫0∞u(u+1)(π2+(lnu)2)du=∫0∞x(x+1)(π2+(lnx)2)dx I=∫0∞(1+x)(π2+(lnx)2)dx I=∫0∞x(1+x)(π2+(lnx)2)dx Then, adding the two equations gives
2I=∫0∞(1+x)(π2+(lnx)2)1+x(1+x)(π2+(lnx)2)1dx 2I=∫0∞x(1+x)(π2+(lnx)2)x+1dx 2I=∫0∞x(π2+(lnx)2)1dx Let t=lnx. Then x=et, so dx=etdt. When x=0, t=−∞. When x=∞, t=∞. 2I=∫−∞∞et(π2+t2)etdt=∫−∞∞π2+t2dt=π1arctanπt∣−∞∞=π1(2π−(−2π))=π1(π)=1 So 2I=1, which means I=21.