We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}$

AnalysisDefinite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

1. Problem Description

We are asked to evaluate the following integral:
0+dx(1+x)(π2+ln2x)\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}

2. Solution Steps

Let I=0dx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{(1+x)(\pi^2 + (\ln x)^2)}.
Let x=1ux = \frac{1}{u}, so dx=1u2dudx = -\frac{1}{u^2} du. When x=0x=0, u=u=\infty, and when x=x=\infty, u=0u=0. Then,
I=01u2du(1+1u)(π2+(ln(1u))2)=01u2du(u+1u)(π2+(lnu)2)=01u2du(u+1u)(π2+(lnu)2)=0duu(u+1)(π2+(lnu)2)=0dxx(x+1)(π2+(lnx)2)I = \int_{\infty}^{0} \frac{-\frac{1}{u^2} du}{(1+\frac{1}{u})(\pi^2 + (\ln (\frac{1}{u}))^2)} = \int_{\infty}^{0} \frac{-\frac{1}{u^2} du}{(\frac{u+1}{u})(\pi^2 + (-\ln u)^2)} = \int_{0}^{\infty} \frac{\frac{1}{u^2} du}{(\frac{u+1}{u})(\pi^2 + (\ln u)^2)} = \int_{0}^{\infty} \frac{du}{u(u+1)(\pi^2 + (\ln u)^2)} = \int_{0}^{\infty} \frac{dx}{x(x+1)(\pi^2 + (\ln x)^2)}
I=0dx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{(1+x)(\pi^2 + (\ln x)^2)}
I=0dxx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{x(1+x)(\pi^2 + (\ln x)^2)}
Then, adding the two equations gives
2I=01(1+x)(π2+(lnx)2)+1x(1+x)(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{1}{(1+x)(\pi^2 + (\ln x)^2)} + \frac{1}{x(1+x)(\pi^2 + (\ln x)^2)} dx
2I=0x+1x(1+x)(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{x+1}{x(1+x)(\pi^2 + (\ln x)^2)} dx
2I=01x(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{1}{x(\pi^2 + (\ln x)^2)} dx
Let t=lnxt = \ln x. Then x=etx = e^t, so dx=etdtdx = e^t dt. When x=0x=0, t=t = -\infty. When x=x=\infty, t=t=\infty.
2I=etdtet(π2+t2)=dtπ2+t2=1πarctantπ=1π(π2(π2))=1π(π)=12I = \int_{-\infty}^{\infty} \frac{e^t dt}{e^t (\pi^2 + t^2)} = \int_{-\infty}^{\infty} \frac{dt}{\pi^2 + t^2} = \frac{1}{\pi} \arctan \frac{t}{\pi} |_{-\infty}^{\infty} = \frac{1}{\pi} (\frac{\pi}{2} - (-\frac{\pi}{2})) = \frac{1}{\pi} (\pi) = 1
So 2I=12I = 1, which means I=12I = \frac{1}{2}.

3. Final Answer

1/2

Related problems in "Analysis"

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13

The problem states: If $(x+1)f'(x) = f(x) + \frac{1}{x}$, then $f'(\frac{1}{2}) = ?$

Differential EquationsIntegrationPartial Fraction DecompositionCalculus
2025/4/13

The problem asks us to find the value of $l$ if $\int x^2 \, dx = lx + \frac{x^3}{3} + c$, where $c$...

IntegrationDefinite IntegralsCalculusPower Rule
2025/4/13

We are given a set of questions about functions and continuity. We need to find the answers to these...

ContinuityLimitsTrigonometric FunctionsCalculus
2025/4/13