We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}$

AnalysisDefinite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

1. Problem Description

We are asked to evaluate the following integral:
0+dx(1+x)(π2+ln2x)\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}

2. Solution Steps

Let I=0dx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{(1+x)(\pi^2 + (\ln x)^2)}.
Let x=1ux = \frac{1}{u}, so dx=1u2dudx = -\frac{1}{u^2} du. When x=0x=0, u=u=\infty, and when x=x=\infty, u=0u=0. Then,
I=01u2du(1+1u)(π2+(ln(1u))2)=01u2du(u+1u)(π2+(lnu)2)=01u2du(u+1u)(π2+(lnu)2)=0duu(u+1)(π2+(lnu)2)=0dxx(x+1)(π2+(lnx)2)I = \int_{\infty}^{0} \frac{-\frac{1}{u^2} du}{(1+\frac{1}{u})(\pi^2 + (\ln (\frac{1}{u}))^2)} = \int_{\infty}^{0} \frac{-\frac{1}{u^2} du}{(\frac{u+1}{u})(\pi^2 + (-\ln u)^2)} = \int_{0}^{\infty} \frac{\frac{1}{u^2} du}{(\frac{u+1}{u})(\pi^2 + (\ln u)^2)} = \int_{0}^{\infty} \frac{du}{u(u+1)(\pi^2 + (\ln u)^2)} = \int_{0}^{\infty} \frac{dx}{x(x+1)(\pi^2 + (\ln x)^2)}
I=0dx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{(1+x)(\pi^2 + (\ln x)^2)}
I=0dxx(1+x)(π2+(lnx)2)I = \int_0^{\infty} \frac{dx}{x(1+x)(\pi^2 + (\ln x)^2)}
Then, adding the two equations gives
2I=01(1+x)(π2+(lnx)2)+1x(1+x)(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{1}{(1+x)(\pi^2 + (\ln x)^2)} + \frac{1}{x(1+x)(\pi^2 + (\ln x)^2)} dx
2I=0x+1x(1+x)(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{x+1}{x(1+x)(\pi^2 + (\ln x)^2)} dx
2I=01x(π2+(lnx)2)dx2I = \int_0^{\infty} \frac{1}{x(\pi^2 + (\ln x)^2)} dx
Let t=lnxt = \ln x. Then x=etx = e^t, so dx=etdtdx = e^t dt. When x=0x=0, t=t = -\infty. When x=x=\infty, t=t=\infty.
2I=etdtet(π2+t2)=dtπ2+t2=1πarctantπ=1π(π2(π2))=1π(π)=12I = \int_{-\infty}^{\infty} \frac{e^t dt}{e^t (\pi^2 + t^2)} = \int_{-\infty}^{\infty} \frac{dt}{\pi^2 + t^2} = \frac{1}{\pi} \arctan \frac{t}{\pi} |_{-\infty}^{\infty} = \frac{1}{\pi} (\frac{\pi}{2} - (-\frac{\pi}{2})) = \frac{1}{\pi} (\pi) = 1
So 2I=12I = 1, which means I=12I = \frac{1}{2}.

3. Final Answer

1/2

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7