$x + \frac{1}{x} = 4$ のとき、$x^2 + \frac{1}{x^2}$ と $x^3 + \frac{1}{x^3}$ の値を求めます。代数学式の計算展開累乗代数2025/6/301. 問題の内容x+1x=4x + \frac{1}{x} = 4x+x1=4 のとき、x2+1x2x^2 + \frac{1}{x^2}x2+x21 と x3+1x3x^3 + \frac{1}{x^3}x3+x31 の値を求めます。2. 解き方の手順まず、x2+1x2x^2 + \frac{1}{x^2}x2+x21 を求めます。x+1x=4x + \frac{1}{x} = 4x+x1=4 の両辺を2乗します。(x+1x)2=42(x + \frac{1}{x})^2 = 4^2(x+x1)2=42x2+2⋅x⋅1x+1x2=16x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 16x2+2⋅x⋅x1+x21=16x2+2+1x2=16x^2 + 2 + \frac{1}{x^2} = 16x2+2+x21=16x2+1x2=16−2x^2 + \frac{1}{x^2} = 16 - 2x2+x21=16−2x2+1x2=14x^2 + \frac{1}{x^2} = 14x2+x21=14次に、x3+1x3x^3 + \frac{1}{x^3}x3+x31 を求めます。x+1x=4x + \frac{1}{x} = 4x+x1=4 の両辺を3乗します。(x+1x)3=43(x + \frac{1}{x})^3 = 4^3(x+x1)3=43x3+3⋅x2⋅1x+3⋅x⋅1x2+1x3=64x^3 + 3 \cdot x^2 \cdot \frac{1}{x} + 3 \cdot x \cdot \frac{1}{x^2} + \frac{1}{x^3} = 64x3+3⋅x2⋅x1+3⋅x⋅x21+x31=64x3+3x+3x+1x3=64x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = 64x3+3x+x3+x31=64x3+1x3+3(x+1x)=64x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = 64x3+x31+3(x+x1)=64x3+1x3+3(4)=64x^3 + \frac{1}{x^3} + 3(4) = 64x3+x31+3(4)=64x3+1x3+12=64x^3 + \frac{1}{x^3} + 12 = 64x3+x31+12=64x3+1x3=64−12x^3 + \frac{1}{x^3} = 64 - 12x3+x31=64−12x3+1x3=52x^3 + \frac{1}{x^3} = 52x3+x31=523. 最終的な答えx2+1x2=14x^2 + \frac{1}{x^2} = 14x2+x21=14x3+1x3=52x^3 + \frac{1}{x^3} = 52x3+x31=52