与えられた式 $a^3(b-c) + b^3(c-a) + c^3(a-b)$ を因数分解せよ。代数学因数分解多項式2025/6/301. 問題の内容与えられた式 a3(b−c)+b3(c−a)+c3(a−b)a^3(b-c) + b^3(c-a) + c^3(a-b)a3(b−c)+b3(c−a)+c3(a−b) を因数分解せよ。2. 解き方の手順与えられた式を aaa について整理する。a3(b−c)+b3(c−a)+c3(a−b)=a3(b−c)+b3c−ab3+ac3−bc3a^3(b-c) + b^3(c-a) + c^3(a-b) = a^3(b-c) + b^3c - ab^3 + ac^3 - bc^3a3(b−c)+b3(c−a)+c3(a−b)=a3(b−c)+b3c−ab3+ac3−bc3=a3(b−c)−a(b3−c3)+(b3c−bc3) = a^3(b-c) - a(b^3 - c^3) + (b^3c - bc^3)=a3(b−c)−a(b3−c3)+(b3c−bc3)=a3(b−c)−a(b−c)(b2+bc+c2)+bc(b2−c2) = a^3(b-c) - a(b-c)(b^2 + bc + c^2) + bc(b^2 - c^2)=a3(b−c)−a(b−c)(b2+bc+c2)+bc(b2−c2)=a3(b−c)−a(b−c)(b2+bc+c2)+bc(b−c)(b+c) = a^3(b-c) - a(b-c)(b^2 + bc + c^2) + bc(b-c)(b+c)=a3(b−c)−a(b−c)(b2+bc+c2)+bc(b−c)(b+c)=(b−c)[a3−a(b2+bc+c2)+bc(b+c)] = (b-c)[a^3 - a(b^2 + bc + c^2) + bc(b+c)]=(b−c)[a3−a(b2+bc+c2)+bc(b+c)]=(b−c)[a3−a(b2+bc+c2)+b2c+bc2] = (b-c)[a^3 - a(b^2 + bc + c^2) + b^2c + bc^2]=(b−c)[a3−a(b2+bc+c2)+b2c+bc2]=(b−c)[a3−ab2−abc−ac2+b2c+bc2] = (b-c)[a^3 - ab^2 - abc - ac^2 + b^2c + bc^2]=(b−c)[a3−ab2−abc−ac2+b2c+bc2]=(b−c)[a3−ab2+b2c−abc−ac2+bc2] = (b-c)[a^3 - ab^2 + b^2c - abc - ac^2 + bc^2]=(b−c)[a3−ab2+b2c−abc−ac2+bc2]=(b−c)[a(a2−b2)+bc(b−a)−c2(a−b)] = (b-c)[a(a^2 - b^2) + bc(b-a) - c^2(a-b)]=(b−c)[a(a2−b2)+bc(b−a)−c2(a−b)]=(b−c)[a(a−b)(a+b)−bc(a−b)−c2(a−b)] = (b-c)[a(a-b)(a+b) - bc(a-b) - c^2(a-b)]=(b−c)[a(a−b)(a+b)−bc(a−b)−c2(a−b)]=(b−c)(a−b)[a(a+b)−bc−c2] = (b-c)(a-b)[a(a+b) - bc - c^2]=(b−c)(a−b)[a(a+b)−bc−c2]=(b−c)(a−b)[a2+ab−bc−c2] = (b-c)(a-b)[a^2 + ab - bc - c^2]=(b−c)(a−b)[a2+ab−bc−c2]=(b−c)(a−b)[a2−c2+ab−bc] = (b-c)(a-b)[a^2 - c^2 + ab - bc]=(b−c)(a−b)[a2−c2+ab−bc]=(b−c)(a−b)[(a−c)(a+c)+b(a−c)] = (b-c)(a-b)[(a-c)(a+c) + b(a-c)]=(b−c)(a−b)[(a−c)(a+c)+b(a−c)]=(b−c)(a−b)(a−c)[a+c+b] = (b-c)(a-b)(a-c)[a+c+b]=(b−c)(a−b)(a−c)[a+c+b]=−(a−b)(b−c)(c−a)(a+b+c) = -(a-b)(b-c)(c-a)(a+b+c)=−(a−b)(b−c)(c−a)(a+b+c)3. 最終的な答え−(a−b)(b−c)(c−a)(a+b+c)-(a-b)(b-c)(c-a)(a+b+c)−(a−b)(b−c)(c−a)(a+b+c)あるいは、(a−b)(b−c)(c−a)(a+b+c)(a-b)(b-c)(c-a)(a+b+c)(a−b)(b−c)(c−a)(a+b+c)のマイナスを考慮して−(a−b)(b−c)(c−a)(a+b+c)\qquad -(a-b)(b-c)(c-a)(a+b+c)−(a−b)(b−c)(c−a)(a+b+c)最終的な答え:−(a−b)(b−c)(c−a)(a+b+c) -(a-b)(b-c)(c-a)(a+b+c)−(a−b)(b−c)(c−a)(a+b+c)