2次方程式 $x^2 + ax + 3a = 0$ が異なる2つの実数解を持つとき、定数 $a$ の値の範囲を求めよ。

代数学二次方程式判別式不等式
2025/7/1

1. 問題の内容

2次方程式 x2+ax+3a=0x^2 + ax + 3a = 0 が異なる2つの実数解を持つとき、定数 aa の値の範囲を求めよ。

2. 解き方の手順

2次方程式が異なる2つの実数解を持つためには、判別式 DD が正である必要があります。
与えられた2次方程式の判別式 DD は、
D=a24(1)(3a)=a212aD = a^2 - 4(1)(3a) = a^2 - 12a
となります。
D>0D > 0 である必要があるので、
a212a>0a^2 - 12a > 0
a(a12)>0a(a - 12) > 0
この不等式を解くと、a<0a < 0 または 12<a12 < a となります。

3. 最終的な答え

a<0a < 0 または a>12a > 12

「代数学」の関連問題

定数 $m$ を用いた3つの2次方程式が与えられています。それぞれの2次方程式の解の種類(異なる2つの実数解、重解、異なる2つの虚数解)を判別します。 (1) $x^2 + 3x + m - 1 = ...

二次方程式判別式解の判別
2025/7/1

2次関数 $y = x^2 + 2x - 3$ の定義域 $-3 \le x \le 2$ における最大値と最小値を求める問題です。

二次関数最大値最小値平方完成定義域
2025/7/1

$y$軸に平行な軸を持つ放物線について、以下の条件を満たす方程式を標準形で求め、軸と頂点を求め、グラフの概形を描く問題です。 (1) 3点$(-1, -1)$, $(0, 2)$, $(2, 2)$を...

放物線二次関数グラフ標準形頂点
2025/7/1

数列 $\{a_n\}$ が $a_1 = \frac{1}{4}$、$a_{n+1} = \frac{1+2a_n}{4-a_n}$ で定義されているとき、$a_n = \frac{n}{n+3}$...

数列数学的帰納法漸化式
2025/7/1

2次方程式 $x^2 + ax + a^2 + ab + 2 = 0$ が、どのような $a$ の値に対しても実数解をもたないような定数 $b$ の値の範囲を求める問題です。

二次方程式判別式不等式実数解二次不等式
2025/7/1

3次方程式 $x^3 - x^2 - x + a = 0$ が異なる2つの実数解を持つような、$a$の値をすべて求める。

三次方程式微分極値解の個数
2025/7/1

すべての自然数 $n$ に対して、不等式 $3^n \geq 3n^2 - 3n + 3$ が成り立つことを数学的帰納法を用いて証明する問題です。与えられた不等式を①とします。$n=1$ のときは成り...

数学的帰納法不等式指数関数多項式
2025/7/1

4次方程式 $x^4 - 8x^2 + k = 0$ が異なる4つの実数解をもつような $k$ の値の範囲を求める。

4次方程式二次方程式判別式解と係数の関係実数解
2025/7/1

数列 $10, 5, x, y$ の各項の逆数を順に並べた数列が等差数列であるとき、$x, y$ の値を求める問題です。

数列等差数列逆数
2025/7/1

3次方程式 $x^3 - 6x + 3 = 0$ の実数解の個数を求める問題です。

三次方程式微分増減極値実数解
2025/7/1