The problem asks to determine the average value of the function $f(x) = \frac{2}{5}x^4$ over the interval $[-1, 1]$.

AnalysisCalculusDefinite IntegralsAverage Value of a FunctionIntegration
2025/3/31

1. Problem Description

The problem asks to determine the average value of the function f(x)=25x4f(x) = \frac{2}{5}x^4 over the interval [1,1][-1, 1].

2. Solution Steps

The average value of a function f(x)f(x) over an interval [a,b][a, b] is given by:
favg=1baabf(x)dxf_{avg} = \frac{1}{b-a}\int_{a}^{b} f(x) dx
In this case, f(x)=25x4f(x) = \frac{2}{5}x^4, a=1a = -1, and b=1b = 1. Substituting these values into the formula, we get:
favg=11(1)1125x4dxf_{avg} = \frac{1}{1 - (-1)}\int_{-1}^{1} \frac{2}{5}x^4 dx
favg=121125x4dxf_{avg} = \frac{1}{2} \int_{-1}^{1} \frac{2}{5}x^4 dx
favg=122511x4dxf_{avg} = \frac{1}{2} \cdot \frac{2}{5} \int_{-1}^{1} x^4 dx
favg=1511x4dxf_{avg} = \frac{1}{5} \int_{-1}^{1} x^4 dx
Now we evaluate the integral:
x4dx=x55\int x^4 dx = \frac{x^5}{5}
So,
11x4dx=x5511=(1)55(1)55=1515=15+15=25\int_{-1}^{1} x^4 dx = \frac{x^5}{5}\Big|_{-1}^{1} = \frac{(1)^5}{5} - \frac{(-1)^5}{5} = \frac{1}{5} - \frac{-1}{5} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}
Substitute the result of the integral back into the expression for favgf_{avg}:
favg=1525=225f_{avg} = \frac{1}{5} \cdot \frac{2}{5} = \frac{2}{25}

3. Final Answer

The average value of the function f(x)=25x4f(x) = \frac{2}{5}x^4 over the interval [1,1][-1, 1] is 225\frac{2}{25}.

Related problems in "Analysis"

The problem has two parts. Part (a) asks to determine the truthfulness of two statements and provide...

CalculusExtreme ValuesRolle's TheoremHyperbolic Functions
2025/4/12

The problem asks us to determine whether two statements about differentiability and continuity are t...

DifferentiabilityContinuityLimitsReal AnalysisContrapositive
2025/4/11

The problem asks us to find the domain of the function $f(x) = \frac{\sqrt{(\sqrt{x})^x - x^{\sqrt{x...

DomainFunctionsLogarithmsExponentsInequalities
2025/4/11

a) We are given the function $f(x) = \sqrt{ax - b}$, where $a, b \in \mathbb{R}$ and $a > 0$. We nee...

LimitsInverse Hyperbolic FunctionsCalculus
2025/4/11

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5