We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$ We need to find the value of $f''(x) + f(x)$.

AnalysisDeterminantsDerivativesTrigonometryCalculus
2025/4/10

1. Problem Description

We are given a function f(x)f(x) defined as a determinant:
$f(x) = \begin{vmatrix}
\sin x & \cos x & \sin x + \cos x + 1 \\
27 & 28 & 27 \\
1 & 1 & 1
\end{vmatrix}$
We need to find the value of f(x)+f(x)f''(x) + f(x).

2. Solution Steps

First, we evaluate the determinant:
f(x)=sinx(2827)cosx(2727)+(sinx+cosx+1)(2728)f(x) = \sin x (28 - 27) - \cos x (27 - 27) + (\sin x + \cos x + 1) (27 - 28)
f(x)=sinx(1)cosx(0)+(sinx+cosx+1)(1)f(x) = \sin x (1) - \cos x (0) + (\sin x + \cos x + 1) (-1)
f(x)=sinxsinxcosx1f(x) = \sin x - \sin x - \cos x - 1
f(x)=cosx1f(x) = -\cos x - 1
Now, we find the first derivative of f(x)f(x):
f(x)=ddx(cosx1)=sinxf'(x) = \frac{d}{dx}(-\cos x - 1) = \sin x
Next, we find the second derivative of f(x)f(x):
f(x)=ddx(sinx)=cosxf''(x) = \frac{d}{dx}(\sin x) = \cos x
Finally, we calculate f(x)+f(x)f''(x) + f(x):
f(x)+f(x)=cosx+(cosx1)=cosxcosx1=1f''(x) + f(x) = \cos x + (-\cos x - 1) = \cos x - \cos x - 1 = -1

3. Final Answer

The value of f(x)+f(x)f''(x) + f(x) is 1-1.

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13