The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\cos(x - \frac{\pi}{6}) - \sin x$ and $g(x) = 2\sin(x + \frac{\pi}{4}) - \sqrt{2} \sin x$. We need to show that there exists a constant $K$ such that $f(x) = K \cdot g(x)$ for all $x$. Then, using $x = \frac{\pi}{6}$, we need to calculate $\sin(\frac{5\pi}{12})$.

AnalysisTrigonometryTrigonometric IdentitiesFunctions
2025/4/10

1. Problem Description

The problem consists of several exercises. Exercise 5 asks us to consider two functions, f(x)=2cos(xπ6)sinxf(x) = 2\cos(x - \frac{\pi}{6}) - \sin x and g(x)=2sin(x+π4)2sinxg(x) = 2\sin(x + \frac{\pi}{4}) - \sqrt{2} \sin x. We need to show that there exists a constant KK such that f(x)=Kg(x)f(x) = K \cdot g(x) for all xx. Then, using x=π6x = \frac{\pi}{6}, we need to calculate sin(5π12)\sin(\frac{5\pi}{12}).

2. Solution Steps

First, let's find the value of K such that f(x)=Kg(x)f(x) = K \cdot g(x).
Let's set x=0x = 0. Then we have:
f(0)=2cos(π6)sin(0)=2cos(π6)0=232=3f(0) = 2\cos(-\frac{\pi}{6}) - \sin(0) = 2\cos(\frac{\pi}{6}) - 0 = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}
g(0)=2sin(π4)2sin(0)=2220=2g(0) = 2\sin(\frac{\pi}{4}) - \sqrt{2} \sin(0) = 2 \cdot \frac{\sqrt{2}}{2} - 0 = \sqrt{2}
Then, f(0)=Kg(0)f(0) = K \cdot g(0), so 3=K2\sqrt{3} = K \cdot \sqrt{2}, which implies K=32=62K = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}.
Now, using x=π6x = \frac{\pi}{6}, we have:
f(π6)=2cos(π6π6)sin(π6)=2cos(0)sin(π6)=2112=32f(\frac{\pi}{6}) = 2\cos(\frac{\pi}{6} - \frac{\pi}{6}) - \sin(\frac{\pi}{6}) = 2\cos(0) - \sin(\frac{\pi}{6}) = 2 \cdot 1 - \frac{1}{2} = \frac{3}{2}
g(π6)=2sin(π6+π4)2sin(π6)=2sin(2π+3π12)212=2sin(5π12)22g(\frac{\pi}{6}) = 2\sin(\frac{\pi}{6} + \frac{\pi}{4}) - \sqrt{2} \sin(\frac{\pi}{6}) = 2\sin(\frac{2\pi + 3\pi}{12}) - \sqrt{2} \cdot \frac{1}{2} = 2\sin(\frac{5\pi}{12}) - \frac{\sqrt{2}}{2}
We have f(π6)=Kg(π6)f(\frac{\pi}{6}) = K \cdot g(\frac{\pi}{6}). Substituting the values, we get:
32=62(2sin(5π12)22)\frac{3}{2} = \frac{\sqrt{6}}{2} \cdot (2\sin(\frac{5\pi}{12}) - \frac{\sqrt{2}}{2})
32=6sin(5π12)124\frac{3}{2} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{\sqrt{12}}{4}
32=6sin(5π12)234=6sin(5π12)32\frac{3}{2} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{2\sqrt{3}}{4} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{\sqrt{3}}{2}
6sin(5π12)=32+32=3+32\sqrt{6} \sin(\frac{5\pi}{12}) = \frac{3}{2} + \frac{\sqrt{3}}{2} = \frac{3+\sqrt{3}}{2}
sin(5π12)=3+326=3+32666=36+3212=6+24\sin(\frac{5\pi}{12}) = \frac{3+\sqrt{3}}{2\sqrt{6}} = \frac{3+\sqrt{3}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{3\sqrt{6}+3\sqrt{2}}{12} = \frac{\sqrt{6}+\sqrt{2}}{4}
Alternatively, sin(5π12)=sin(2π12+3π12)=sin(π6+π4)=sin(π6)cos(π4)+cos(π6)sin(π4)=1222+3222=2+64\sin(\frac{5\pi}{12}) = \sin(\frac{2\pi}{12}+\frac{3\pi}{12}) = \sin(\frac{\pi}{6}+\frac{\pi}{4}) = \sin(\frac{\pi}{6})\cos(\frac{\pi}{4}) + \cos(\frac{\pi}{6})\sin(\frac{\pi}{4}) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.

3. Final Answer

sin(5π12)=6+24\sin(\frac{5\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}

Related problems in "Analysis"

The question asks how the domains of the pieces of a piecewise-defined function relate to the entire...

Piecewise FunctionsDomainFunction Definition
2025/4/18

Given the function $f(x) = \frac{x^2 + 2x + 1}{x-1}$, we are asked to: 1) Find real numbers $a$, $b$...

LimitsDerivativesTable of VariationsRational Functions
2025/4/17

The problem asks us to analyze the function $f(x) = 5 \cdot (\frac{1}{2})^x$ and graph it.

Exponential FunctionsFunction AnalysisGraphing
2025/4/17

We are given two functions: $f(x) = x + 2 + \frac{4}{x-1}$ and $g(x) = x \ln x$. We need to study th...

CalculusDerivativesFunction AnalysisIncreasing/Decreasing FunctionsCritical Points
2025/4/16

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14