The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\cos(x - \frac{\pi}{6}) - \sin x$ and $g(x) = 2\sin(x + \frac{\pi}{4}) - \sqrt{2} \sin x$. We need to show that there exists a constant $K$ such that $f(x) = K \cdot g(x)$ for all $x$. Then, using $x = \frac{\pi}{6}$, we need to calculate $\sin(\frac{5\pi}{12})$.

AnalysisTrigonometryTrigonometric IdentitiesFunctions
2025/4/10

1. Problem Description

The problem consists of several exercises. Exercise 5 asks us to consider two functions, f(x)=2cos(xπ6)sinxf(x) = 2\cos(x - \frac{\pi}{6}) - \sin x and g(x)=2sin(x+π4)2sinxg(x) = 2\sin(x + \frac{\pi}{4}) - \sqrt{2} \sin x. We need to show that there exists a constant KK such that f(x)=Kg(x)f(x) = K \cdot g(x) for all xx. Then, using x=π6x = \frac{\pi}{6}, we need to calculate sin(5π12)\sin(\frac{5\pi}{12}).

2. Solution Steps

First, let's find the value of K such that f(x)=Kg(x)f(x) = K \cdot g(x).
Let's set x=0x = 0. Then we have:
f(0)=2cos(π6)sin(0)=2cos(π6)0=232=3f(0) = 2\cos(-\frac{\pi}{6}) - \sin(0) = 2\cos(\frac{\pi}{6}) - 0 = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}
g(0)=2sin(π4)2sin(0)=2220=2g(0) = 2\sin(\frac{\pi}{4}) - \sqrt{2} \sin(0) = 2 \cdot \frac{\sqrt{2}}{2} - 0 = \sqrt{2}
Then, f(0)=Kg(0)f(0) = K \cdot g(0), so 3=K2\sqrt{3} = K \cdot \sqrt{2}, which implies K=32=62K = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}.
Now, using x=π6x = \frac{\pi}{6}, we have:
f(π6)=2cos(π6π6)sin(π6)=2cos(0)sin(π6)=2112=32f(\frac{\pi}{6}) = 2\cos(\frac{\pi}{6} - \frac{\pi}{6}) - \sin(\frac{\pi}{6}) = 2\cos(0) - \sin(\frac{\pi}{6}) = 2 \cdot 1 - \frac{1}{2} = \frac{3}{2}
g(π6)=2sin(π6+π4)2sin(π6)=2sin(2π+3π12)212=2sin(5π12)22g(\frac{\pi}{6}) = 2\sin(\frac{\pi}{6} + \frac{\pi}{4}) - \sqrt{2} \sin(\frac{\pi}{6}) = 2\sin(\frac{2\pi + 3\pi}{12}) - \sqrt{2} \cdot \frac{1}{2} = 2\sin(\frac{5\pi}{12}) - \frac{\sqrt{2}}{2}
We have f(π6)=Kg(π6)f(\frac{\pi}{6}) = K \cdot g(\frac{\pi}{6}). Substituting the values, we get:
32=62(2sin(5π12)22)\frac{3}{2} = \frac{\sqrt{6}}{2} \cdot (2\sin(\frac{5\pi}{12}) - \frac{\sqrt{2}}{2})
32=6sin(5π12)124\frac{3}{2} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{\sqrt{12}}{4}
32=6sin(5π12)234=6sin(5π12)32\frac{3}{2} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{2\sqrt{3}}{4} = \sqrt{6} \sin(\frac{5\pi}{12}) - \frac{\sqrt{3}}{2}
6sin(5π12)=32+32=3+32\sqrt{6} \sin(\frac{5\pi}{12}) = \frac{3}{2} + \frac{\sqrt{3}}{2} = \frac{3+\sqrt{3}}{2}
sin(5π12)=3+326=3+32666=36+3212=6+24\sin(\frac{5\pi}{12}) = \frac{3+\sqrt{3}}{2\sqrt{6}} = \frac{3+\sqrt{3}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{3\sqrt{6}+3\sqrt{2}}{12} = \frac{\sqrt{6}+\sqrt{2}}{4}
Alternatively, sin(5π12)=sin(2π12+3π12)=sin(π6+π4)=sin(π6)cos(π4)+cos(π6)sin(π4)=1222+3222=2+64\sin(\frac{5\pi}{12}) = \sin(\frac{2\pi}{12}+\frac{3\pi}{12}) = \sin(\frac{\pi}{6}+\frac{\pi}{4}) = \sin(\frac{\pi}{6})\cos(\frac{\pi}{4}) + \cos(\frac{\pi}{6})\sin(\frac{\pi}{4}) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.

3. Final Answer

sin(5π12)=6+24\sin(\frac{5\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}

Related problems in "Analysis"

We are asked to evaluate the following iterated integrals: 1. $\int_0^2 \int_0^3 (9-x) dy dx$

Multivariable CalculusIterated IntegralsIntegration
2025/5/16

We are asked to evaluate the double integral $\iint_R f(x, y) dA$ where $R = \{(x, y): 1 \le x \le 4...

Double IntegralsMultivariable CalculusPiecewise Functions
2025/5/16

The problem asks us to evaluate two integrals: 1. $\int e^{2x} dx$

IntegrationCalculusDefinite IntegralsSubstitutionIntegration by Parts
2025/5/15

We are asked to evaluate the definite integral $\int_0^\pi \sin^2 x \, dx$.

Definite IntegralTrigonometric IdentityIntegrationSin^2(x)Calculus
2025/5/15

We are asked to find the critical points of the given functions and classify them as local maxima, l...

Multivariable CalculusPartial DerivativesCritical PointsLocal MaximaLocal MinimaDeterminantSecond Derivative Test
2025/5/15

The problem asks to find $y'$ given the equation $x^y = y^x$ using implicit differentiation.

Implicit DifferentiationDerivativesLogarithms
2025/5/15

The problem asks us to determine whether the given statements are true or false. If true, we must ex...

LogarithmsLimitsFunctionsReal AnalysisCounterexamples
2025/5/15

a) Determine if the statement "If $a, b \in \mathbb{R} \setminus \{0\}$, then $\ln(ab) = \ln a + \ln...

Real AnalysisLimitsLogarithmsFunctionsDomain and Range
2025/5/15

We are given four problems: a) Find $y'$ using implicit differentiation, given $x^y = y^x$. b) A man...

Implicit DifferentiationRelated RatesRolle's TheoremChain RuleDifferentiationLogarithms
2025/5/15

The problem presents a differential equation $\frac{dV}{dx} = -w(x)$. We are asked to solve this dif...

Differential EquationsIntegrationAntiderivatives
2025/5/15