a) Determine if the statement "If $a, b \in \mathbb{R} \setminus \{0\}$, then $\ln(ab) = \ln a + \ln b$" is true or false. b) Determine if the statement "If $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $(c, \infty) \subseteq A$ for some $c \in \mathbb{R}$ and $\lim_{x\to\infty} f(x) = 0$, then $f(x) = 0$ for some $x \in A$" is true or false.

AnalysisReal AnalysisLimitsLogarithmsFunctionsDomain and Range
2025/5/15

1. Problem Description

a) Determine if the statement "If a,bR{0}a, b \in \mathbb{R} \setminus \{0\}, then ln(ab)=lna+lnb\ln(ab) = \ln a + \ln b" is true or false.
b) Determine if the statement "If f:ARRf: A \subseteq \mathbb{R} \rightarrow \mathbb{R} is a function such that (c,)A(c, \infty) \subseteq A for some cRc \in \mathbb{R} and limxf(x)=0\lim_{x\to\infty} f(x) = 0, then f(x)=0f(x) = 0 for some xAx \in A" is true or false.

2. Solution Steps

a) The statement "If a,bR{0}a, b \in \mathbb{R} \setminus \{0\}, then ln(ab)=lna+lnb\ln(ab) = \ln a + \ln b" is false.
The domain of the natural logarithm function ln(x)\ln(x) is x>0x > 0.
The statement ln(ab)=lna+lnb\ln(ab) = \ln a + \ln b is true if a>0a>0 and b>0b>0.
However, if a<0a < 0 and b<0b < 0, then ab>0ab > 0, so ln(ab)\ln(ab) is defined. But lna\ln a and lnb\ln b are not defined.
For example, let a=1a = -1 and b=1b = -1. Then ab=1ab = 1, so ln(ab)=ln(1)=0\ln(ab) = \ln(1) = 0. However, ln(a)=ln(1)\ln(a) = \ln(-1) and ln(b)=ln(1)\ln(b) = \ln(-1) are not real numbers.
More generally, ln(ab)=lna+lnb\ln(ab) = \ln|a| + \ln|b| if a,b0a, b \neq 0.
However, lna\ln a and lnb\ln b may not exist.
b) The statement "If f:ARRf: A \subseteq \mathbb{R} \rightarrow \mathbb{R} is a function such that (c,)A(c, \infty) \subseteq A for some cRc \in \mathbb{R} and limxf(x)=0\lim_{x\to\infty} f(x) = 0, then f(x)=0f(x) = 0 for some xAx \in A" is false.
Consider the function f(x)=1xf(x) = \frac{1}{x} defined on A=[1,)A = [1, \infty). Then (1,)A(1, \infty) \subset A, and limxf(x)=limx1x=0\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{1}{x} = 0. However, f(x)=1x>0f(x) = \frac{1}{x} > 0 for all x[1,)x \in [1, \infty). Therefore, there is no xAx \in A such that f(x)=0f(x) = 0.

3. Final Answer

a) False
b) False

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7