The problem asks us to evaluate two integrals: 1. $\int e^{2x} dx$

AnalysisIntegrationCalculusDefinite IntegralsSubstitutionIntegration by Parts
2025/5/15

1. Problem Description

The problem asks us to evaluate two integrals:

1. $\int e^{2x} dx$

2. $\int xe^{-2x} dx$

2. Solution Steps

Problem 15: e2xdx\int e^{2x} dx
We can use a simple substitution to solve this integral.
Let u=2xu = 2x. Then du=2dxdu = 2 dx, so dx=12dudx = \frac{1}{2} du.
e2xdx=eu12du=12eudu=12eu+C=12e2x+C\int e^{2x} dx = \int e^u \frac{1}{2} du = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + C = \frac{1}{2} e^{2x} + C
Problem 16: xe2xdx\int xe^{-2x} dx
This integral requires integration by parts. Recall the formula:
udv=uvvdu\int u dv = uv - \int v du
Let u=xu = x and dv=e2xdxdv = e^{-2x} dx. Then du=dxdu = dx and v=e2xdx=12e2xv = \int e^{-2x} dx = -\frac{1}{2} e^{-2x}.
So,
xe2xdx=x(12e2x)(12e2x)dx\int xe^{-2x} dx = x \left(-\frac{1}{2} e^{-2x}\right) - \int \left(-\frac{1}{2} e^{-2x}\right) dx
=12xe2x+12e2xdx= -\frac{1}{2}xe^{-2x} + \frac{1}{2} \int e^{-2x} dx
=12xe2x+12(12e2x)+C= -\frac{1}{2}xe^{-2x} + \frac{1}{2} \left(-\frac{1}{2} e^{-2x}\right) + C
=12xe2x14e2x+C= -\frac{1}{2}xe^{-2x} - \frac{1}{4} e^{-2x} + C
=12e2x(x+12)+C= -\frac{1}{2} e^{-2x} \left(x + \frac{1}{2}\right) + C

3. Final Answer

1. $\int e^{2x} dx = \frac{1}{2} e^{2x} + C$

2. $\int xe^{-2x} dx = -\frac{1}{2}xe^{-2x} - \frac{1}{4} e^{-2x} + C$

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4