Problem 15: ∫e2xdx We can use a simple substitution to solve this integral.
Let u=2x. Then du=2dx, so dx=21du. ∫e2xdx=∫eu21du=21∫eudu=21eu+C=21e2x+C Problem 16: ∫xe−2xdx This integral requires integration by parts. Recall the formula:
∫udv=uv−∫vdu Let u=x and dv=e−2xdx. Then du=dx and v=∫e−2xdx=−21e−2x. So,
∫xe−2xdx=x(−21e−2x)−∫(−21e−2x)dx =−21xe−2x+21∫e−2xdx =−21xe−2x+21(−21e−2x)+C =−21xe−2x−41e−2x+C =−21e−2x(x+21)+C