The problem asks to find $y'$ given the equation $x^y = y^x$ using implicit differentiation.

AnalysisImplicit DifferentiationDerivativesLogarithms
2025/5/15

1. Problem Description

The problem asks to find yy' given the equation xy=yxx^y = y^x using implicit differentiation.

2. Solution Steps

We are given the equation xy=yxx^y = y^x. We will take the natural logarithm of both sides:
ln(xy)=ln(yx)\ln(x^y) = \ln(y^x)
Using logarithm properties, we have:
yln(x)=xln(y)y \ln(x) = x \ln(y)
Now we differentiate both sides with respect to xx using the product rule and implicit differentiation for terms involving yy:
ddx(yln(x))=ddx(xln(y))\frac{d}{dx} (y \ln(x)) = \frac{d}{dx} (x \ln(y))
dydxln(x)+y1x=1ln(y)+x1ydydx\frac{dy}{dx} \ln(x) + y \cdot \frac{1}{x} = 1 \cdot \ln(y) + x \cdot \frac{1}{y} \frac{dy}{dx}
dydxln(x)+yx=ln(y)+xydydx\frac{dy}{dx} \ln(x) + \frac{y}{x} = \ln(y) + \frac{x}{y} \frac{dy}{dx}
Now we want to solve for dydx\frac{dy}{dx}, which we denote as yy'. Rearrange the equation to isolate yy':
yln(x)xyy=ln(y)yxy' \ln(x) - \frac{x}{y} y' = \ln(y) - \frac{y}{x}
y(ln(x)xy)=ln(y)yxy' (\ln(x) - \frac{x}{y}) = \ln(y) - \frac{y}{x}
Now, solve for yy':
y=ln(y)yxln(x)xyy' = \frac{\ln(y) - \frac{y}{x}}{\ln(x) - \frac{x}{y}}
We can multiply the numerator and denominator by xyxy:
y=xyln(y)y2xyln(x)x2y' = \frac{xy \ln(y) - y^2}{xy \ln(x) - x^2}

3. Final Answer

y=xyln(y)y2xyln(x)x2y' = \frac{xy \ln(y) - y^2}{xy \ln(x) - x^2}

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4