We are given four problems: a) Find $y'$ using implicit differentiation, given $x^y = y^x$. b) A man walks north at 60 cm/s from a point $P$. Five minutes later, a woman walks south at 40 cm/s from a point 1000 cm east of $P$. Find the rate at which the people are moving apart 15 minutes after the woman starts walking. c) Prove that if $\frac{a_n}{n+1} + \frac{a_{n-1}}{n} + \dots + \frac{a_1}{2} + a_0 = 0$, then the equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ has at least one real root between 0 and 1. d) Find $f'(x)$ if $\frac{d}{dx} (f(2 \ln x)) = \frac{\ln x}{(\ln x)^2 + 1}$. Simplify the answer.

AnalysisImplicit DifferentiationRelated RatesRolle's TheoremChain RuleDifferentiationLogarithms
2025/5/15

1. Problem Description

We are given four problems:
a) Find yy' using implicit differentiation, given xy=yxx^y = y^x.
b) A man walks north at 60 cm/s from a point PP. Five minutes later, a woman walks south at 40 cm/s from a point 1000 cm east of PP. Find the rate at which the people are moving apart 15 minutes after the woman starts walking.
c) Prove that if ann+1+an1n++a12+a0=0\frac{a_n}{n+1} + \frac{a_{n-1}}{n} + \dots + \frac{a_1}{2} + a_0 = 0, then the equation anxn+an1xn1++a1x+a0=0a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0 has at least one real root between 0 and

1. d) Find $f'(x)$ if $\frac{d}{dx} (f(2 \ln x)) = \frac{\ln x}{(\ln x)^2 + 1}$. Simplify the answer.

2. Solution Steps

a)
Given xy=yxx^y = y^x. Taking the natural logarithm of both sides, we have:
ylnx=xlnyy \ln x = x \ln y
Now, we differentiate both sides with respect to xx:
ddx(ylnx)=ddx(xlny)\frac{d}{dx}(y \ln x) = \frac{d}{dx}(x \ln y)
Using the product rule:
dydxlnx+y1x=dxdxlny+x1ydydx\frac{dy}{dx} \ln x + y \cdot \frac{1}{x} = \frac{dx}{dx} \ln y + x \cdot \frac{1}{y} \frac{dy}{dx}
dydxlnx+yx=lny+xydydx\frac{dy}{dx} \ln x + \frac{y}{x} = \ln y + \frac{x}{y} \frac{dy}{dx}
dydxlnxxydydx=lnyyx\frac{dy}{dx} \ln x - \frac{x}{y} \frac{dy}{dx} = \ln y - \frac{y}{x}
dydx(lnxxy)=lnyyx\frac{dy}{dx} (\ln x - \frac{x}{y}) = \ln y - \frac{y}{x}
dydx=lnyyxlnxxy=xlnyyxylnxxy=yxxlnyyylnxx\frac{dy}{dx} = \frac{\ln y - \frac{y}{x}}{\ln x - \frac{x}{y}} = \frac{\frac{x \ln y - y}{x}}{\frac{y \ln x - x}{y}} = \frac{y}{x} \cdot \frac{x \ln y - y}{y \ln x - x}
Since ylnx=xlnyy \ln x = x \ln y, we have
dydx=yxxlnyyxlnyx=yxxlnyyx(lny1)\frac{dy}{dx} = \frac{y}{x} \cdot \frac{x \ln y - y}{x \ln y - x} = \frac{y}{x} \cdot \frac{x \ln y - y}{x(\ln y - 1)}
If we multiply the numerator and denominator by xx, we get:
y(xlnyy)x2(lny1)\frac{y(x \ln y - y)}{x^2(\ln y - 1)}
dydx=y(xlnyy)x(ylnxx)=y(xlnyy)x(xlnyx)\frac{dy}{dx} = \frac{y(x \ln y - y)}{x(y \ln x - x)} = \frac{y(x \ln y - y)}{x(x \ln y - x)}
b)
Let ym(t)y_m(t) be the distance the man has walked north from point PP at time tt.
Let yw(t)y_w(t) be the distance the woman has walked south from the point 1000 cm east of PP at time tt.
The man starts walking at t=0t=0 and the woman starts walking at t=300t=300 seconds.
ym(t)=60ty_m(t) = 60t
yw(t)=40(t300)y_w(t) = 40(t - 300) for t300t \ge 300
Let d(t)d(t) be the distance between the man and the woman. We can use the Pythagorean theorem to find d(t)d(t). The horizontal distance between them is 1000 cm. The vertical distance between them is ym(t)+yw(t)y_m(t) + y_w(t).
d(t)=10002+(ym(t)+yw(t))2d(t) = \sqrt{1000^2 + (y_m(t) + y_w(t))^2}
d(t)=10002+(60t+40(t300))2d(t) = \sqrt{1000^2 + (60t + 40(t - 300))^2}
d(t)=10002+(100t12000)2d(t) = \sqrt{1000^2 + (100t - 12000)^2}
We want to find dddt\frac{dd}{dt} when t=15×60=900t = 15 \times 60 = 900 seconds after the woman starts walking, i.e., when t=300+900=1200t=300+900 = 1200 seconds.
dddt=12(10002+(100t12000)2)1/22(100t12000)100\frac{dd}{dt} = \frac{1}{2} (1000^2 + (100t - 12000)^2)^{-1/2} \cdot 2(100t - 12000) \cdot 100
dddt=100(100t12000)10002+(100t12000)2\frac{dd}{dt} = \frac{100(100t - 12000)}{\sqrt{1000^2 + (100t - 12000)^2}}
At t=1200t = 1200:
dddt=100(100120012000)10002+(100120012000)2\frac{dd}{dt} = \frac{100(100 \cdot 1200 - 12000)}{\sqrt{1000^2 + (100 \cdot 1200 - 12000)^2}}
dddt=100(12000012000)10002+(12000012000)2\frac{dd}{dt} = \frac{100(120000 - 12000)}{\sqrt{1000^2 + (120000 - 12000)^2}}
dddt=100(108000)1000000+(108000)2\frac{dd}{dt} = \frac{100(108000)}{\sqrt{1000000 + (108000)^2}}
dddt=108000001000000+11664000000=1080000011665000000=10800000108009.25899.99\frac{dd}{dt} = \frac{10800000}{\sqrt{1000000 + 11664000000}} = \frac{10800000}{\sqrt{11665000000}} = \frac{10800000}{108009.258} \approx 99.99 cm/s
dddt100\frac{dd}{dt} \approx 100 cm/s
c)
Let P(x)=anxn+an1xn1++a1x+a0P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.
Consider the function Q(x)=ann+1xn+1+an1nxn++a12x2+a0xQ(x) = \frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n} x^n + \dots + \frac{a_1}{2} x^2 + a_0 x.
Then Q(x)=anxn+an1xn1++a1x+a0=P(x)Q'(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = P(x).
We are given that Q(1)=ann+1+an1n++a12+a0=0Q(1) = \frac{a_n}{n+1} + \frac{a_{n-1}}{n} + \dots + \frac{a_1}{2} + a_0 = 0. Also Q(0)=0Q(0) = 0.
Since Q(0)=Q(1)=0Q(0) = Q(1) = 0, by Rolle's theorem, there exists a c(0,1)c \in (0, 1) such that Q(c)=0Q'(c) = 0.
But Q(x)=P(x)Q'(x) = P(x), so P(c)=0P(c) = 0 for some c(0,1)c \in (0, 1). Therefore, P(x)P(x) has at least one real root between 0 and
1.
d)
We are given ddx(f(2lnx))=lnx(lnx)2+1\frac{d}{dx} (f(2 \ln x)) = \frac{\ln x}{(\ln x)^2 + 1}.
Let u=2lnxu = 2 \ln x, so lnx=u2\ln x = \frac{u}{2}. Then ddx(f(u))=u/2(u/2)2+1=u/2u24+1=2uu2+4\frac{d}{dx} (f(u)) = \frac{u/2}{(u/2)^2 + 1} = \frac{u/2}{\frac{u^2}{4} + 1} = \frac{2u}{u^2 + 4}.
By the chain rule, ddx(f(2lnx))=f(2lnx)ddx(2lnx)=f(2lnx)2x\frac{d}{dx} (f(2 \ln x)) = f'(2 \ln x) \cdot \frac{d}{dx} (2 \ln x) = f'(2 \ln x) \cdot \frac{2}{x}.
Thus, f(2lnx)2x=lnx(lnx)2+1f'(2 \ln x) \cdot \frac{2}{x} = \frac{\ln x}{(\ln x)^2 + 1}.
f(u)2x=u/2(u/2)2+1f'(u) \cdot \frac{2}{x} = \frac{u/2}{(u/2)^2 + 1}
x=eu/2x = e^{u/2}, so f(u)2eu/2=u/2u2/4+1=2uu2+4f'(u) \cdot \frac{2}{e^{u/2}} = \frac{u/2}{u^2/4 + 1} = \frac{2u}{u^2 + 4}
f(u)=2uu2+4eu/22=ueu/2u2+4f'(u) = \frac{2u}{u^2 + 4} \cdot \frac{e^{u/2}}{2} = \frac{u e^{u/2}}{u^2 + 4}
Therefore, f(x)=xex/2x2+4f'(x) = \frac{x e^{x/2}}{x^2 + 4}.

3. Final Answer

a) dydx=yxxlnyyylnxx\frac{dy}{dx} = \frac{y}{x} \cdot \frac{x \ln y - y}{y \ln x - x}
b) 100 cm/s
c) See solution above.
d) f(x)=xex/2x2+4f'(x) = \frac{x e^{x/2}}{x^2 + 4}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7