The problem asks us to find the antiderivative of $x \cos(5x)$ given that $f(x) = x \sin(5x)$ and $f'(x) = 5x \cos(5x) + \sin(5x)$.

AnalysisIntegrationAntiderivativesTrigonometric FunctionsIntegration by Parts (Implicitly)Calculus
2025/3/31

1. Problem Description

The problem asks us to find the antiderivative of xcos(5x)x \cos(5x) given that f(x)=xsin(5x)f(x) = x \sin(5x) and f(x)=5xcos(5x)+sin(5x)f'(x) = 5x \cos(5x) + \sin(5x).

2. Solution Steps

We are given f(x)=xsin(5x)f(x) = x \sin(5x) and f(x)=5xcos(5x)+sin(5x)f'(x) = 5x \cos(5x) + \sin(5x).
We want to find the antiderivative of xcos(5x)x \cos(5x), which is xcos(5x)dx\int x \cos(5x) \, dx.
From f(x)=5xcos(5x)+sin(5x)f'(x) = 5x \cos(5x) + \sin(5x), we can write
5xcos(5x)=f(x)sin(5x)5x \cos(5x) = f'(x) - \sin(5x).
Dividing by 5, we get
xcos(5x)=f(x)5sin(5x)5x \cos(5x) = \frac{f'(x)}{5} - \frac{\sin(5x)}{5}.
Now, we integrate both sides with respect to xx:
xcos(5x)dx=(f(x)5sin(5x)5)dx\int x \cos(5x) \, dx = \int \left( \frac{f'(x)}{5} - \frac{\sin(5x)}{5} \right) \, dx
xcos(5x)dx=15f(x)dx15sin(5x)dx\int x \cos(5x) \, dx = \frac{1}{5} \int f'(x) \, dx - \frac{1}{5} \int \sin(5x) \, dx.
We know that f(x)dx=f(x)\int f'(x) \, dx = f(x), so
xcos(5x)dx=15f(x)15sin(5x)dx\int x \cos(5x) \, dx = \frac{1}{5} f(x) - \frac{1}{5} \int \sin(5x) \, dx.
To evaluate sin(5x)dx\int \sin(5x) \, dx, we use substitution. Let u=5xu = 5x, so du=5dxdu = 5 \, dx, and dx=15dudx = \frac{1}{5} \, du.
sin(5x)dx=sin(u)15du=15sin(u)du=15(cos(u))+C=15cos(5x)+C\int \sin(5x) \, dx = \int \sin(u) \cdot \frac{1}{5} \, du = \frac{1}{5} \int \sin(u) \, du = \frac{1}{5} (-\cos(u)) + C = -\frac{1}{5} \cos(5x) + C.
Therefore,
xcos(5x)dx=15f(x)15(15cos(5x))+C\int x \cos(5x) \, dx = \frac{1}{5} f(x) - \frac{1}{5} \left( -\frac{1}{5} \cos(5x) \right) + C.
Since f(x)=xsin(5x)f(x) = x \sin(5x),
xcos(5x)dx=15(xsin(5x))+125cos(5x)+C\int x \cos(5x) \, dx = \frac{1}{5} (x \sin(5x)) + \frac{1}{25} \cos(5x) + C.
xcos(5x)dx=xsin(5x)5+cos(5x)25+C\int x \cos(5x) \, dx = \frac{x \sin(5x)}{5} + \frac{\cos(5x)}{25} + C.

3. Final Answer

xsin(5x)5+cos(5x)25+C\frac{x \sin(5x)}{5} + \frac{\cos(5x)}{25} + C

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3