The problem consists of three parts: 1. Sketch the graph of the relation $R = A \times B$ for given sets $A$ and $B$. Determine if $R$ is a function from $A$ to $B$. If not, provide a subset of $R$ that is a function.

AnalysisFunctionsDomainRelations
2025/3/10

1. Problem Description

The problem consists of three parts:

1. Sketch the graph of the relation $R = A \times B$ for given sets $A$ and $B$. Determine if $R$ is a function from $A$ to $B$. If not, provide a subset of $R$ that is a function.

2. Determine if a given relation defines $f$ as a function of $x$. If it is a function, find its domain.

3. Find the domain of given functions.

2. Solution Steps

1. a) $A = Z$ and $B = R$. $R = A \times B = \{(a, b) \mid a \in Z, b \in R\}$.

This relation is not a function, since for any aAa \in A, there are infinitely many bBb \in B such that (a,b)R(a,b) \in R. To create a subset that is a function, we can define f(x)=0f(x) = 0 for all xZx \in Z. Then f={(x,0)xZ}f = \{(x, 0) \mid x \in Z\} is a subset of RR that is a function.
b) A={xRx>1}A = \{x \in R \mid |x| > 1\} and B=[1,1]B = [-1, 1]. R=A×B={(a,b)aR,a>1,b[1,1]}R = A \times B = \{(a, b) \mid a \in R, |a| > 1, b \in [-1, 1]\}.
This is not a function because for a given aAa \in A, there are infinitely many values b[1,1]b \in [-1, 1] such that (a,b)R(a, b) \in R. A subset that is a function can be f={(x,0)xA}f = \{(x, 0) \mid x \in A\}.
c) A=[3,1)A = [-3, 1) and B={xZ2x25x3=0}B = \{x \in Z \mid 2x^2 - 5x - 3 = 0\}. We solve 2x25x3=02x^2 - 5x - 3 = 0.
(2x+1)(x3)=0(2x + 1)(x - 3) = 0. So x=12x = -\frac{1}{2} or x=3x = 3. Thus, B={12,3}B = \{-\frac{1}{2}, 3\}.
Since BZB \subset Z, B=B = \emptyset. R=A×B=R = A \times B = \emptyset.
The empty set is a function because it satisfies the definition vacuously.
d) A={1,2,3,4}A = \{1, 2, 3, 4\} and B={1,0,1}B = \{-1, 0, 1\}. R=A×B={(a,b)aA,bB}={(1,1),(1,0),(1,1),(2,1),(2,0),(2,1),(3,1),(3,0),(3,1),(4,1),(4,0),(4,1)}R = A \times B = \{(a, b) \mid a \in A, b \in B\} = \{(1, -1), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1), (3, -1), (3, 0), (3, 1), (4, -1), (4, 0), (4, 1)\}.
This is not a function, since for any aAa \in A, there are multiple values in B. A subset that is a function can be f={(1,1),(2,0),(3,1),(4,1)}f = \{(1, -1), (2, 0), (3, 1), (4, -1)\}.

2. a)

f(x)={x416if x06xif x24f(x) = \begin{cases} \sqrt{x^4 - 16} & \text{if } x \geq 0 \\ 6 - x & \text{if } x^2 \leq 4 \end{cases}
We have two conditions on xx: x0x \geq 0 and x24    2x2x^2 \leq 4 \implies -2 \leq x \leq 2.
If x0x \geq 0, then x4160x^4 - 16 \geq 0, so x416x^4 \geq 16 and x2x \geq 2. Combining with x0x \geq 0, we have x2x \geq 2.
If x24x^2 \leq 4, then 2x2-2 \leq x \leq 2.
The domain of ff is the union of the intervals where the conditions are satisfied. We have x2x \geq 2 and 2x2-2 \leq x \leq 2. Therefore, the domain of ff is {2x2}{x2}=[2,)\{-2 \le x \le 2\} \cup \{x \ge 2\} = [-2, -\infty).
However, since xx cannot be both 0\geq 0 and x24x^2 \le 4 at the same time (or they can at x=2x=2), we must check if this function is well defined when x=2x=2:
If x=2x = 2, then f(2)=2416=0f(2) = \sqrt{2^4 - 16} = 0 and f(2)=62=4f(2) = 6 - 2 = 4. Since we get two different values for f(2)f(2), this is not a function.
b)
f(x)={x416if x02xif x24f(x) = \begin{cases} \sqrt{x^4 - 16} & \text{if } x \geq 0 \\ 2 - x & \text{if } x^2 \leq 4 \end{cases}
If x0x \geq 0, then x4160x^4 - 16 \geq 0, so x416x^4 \geq 16 and x2x \geq 2. Combining with x0x \geq 0, we have x2x \geq 2.
If x24x^2 \leq 4, then 2x2-2 \leq x \leq 2.
The domain of ff is the union of the intervals where the conditions are satisfied. We have x2x \geq 2 and 2x2-2 \leq x \leq 2. Therefore, the domain of ff is [2,2][2,)[-2, 2] \cup [2, \infty).
If x=2x = 2, then f(2)=2416=0f(2) = \sqrt{2^4 - 16} = 0 and f(2)=22=0f(2) = 2 - 2 = 0. Since we get the same value for f(2)f(2), this could be a function.
We have x2x \geq 2 and 2x2-2 \leq x \leq 2, so the domain is [2,2][2,)=[2,)[-2, 2] \cup [2, \infty) = [-2, \infty). But, the condition x2x \geq 2 must hold for x416\sqrt{x^4 - 16} to be real. Therefore, the domain is [2,2][2,)=[2,2][2,)[-2, 2] \cup [2, \infty) = [-2, 2] \cup [2, \infty), but x2x\ge 2 must be valid to use x416\sqrt{x^4-16}. Thus x[2,2]x \in [-2,2] uses 2x2-x and x2x\ge 2 uses x416\sqrt{x^4-16}.
Then, for x2x\ge 2, f(x)=x416f(x) = \sqrt{x^4-16}. For x[2,2]x\in [-2, 2], f(x)=2xf(x) = 2-x. x=2x = 2 is a possible value for either of these. Then, this is a function with the domain [2,)[-2, \infty).
c) x2f(x)+x(f(x))2=2x^2 f(x) + x (f(x))^2 = 2.
Let y=f(x)y = f(x). Then x2y+xy2=2x^2 y + x y^2 = 2, or xy2+x2y2=0xy^2 + x^2 y - 2 = 0. Solving for yy, we use the quadratic formula:
y=x2±x44x(2)2x=x2±x4+8x2xy = \frac{-x^2 \pm \sqrt{x^4 - 4x(-2)}}{2x} = \frac{-x^2 \pm \sqrt{x^4 + 8x}}{2x}.
For this to be a function, we need x4+8x0x^4 + 8x \geq 0, x(x3+8)0x(x^3 + 8) \geq 0. So x0x \geq 0 or x38x^3 \leq -8, which means x2x \leq -2. If x=0x=0, the equation is undefined, so x0x \ne 0.
Since there are two possible values for yy for each xx (where the function is defined), this is not a function.
d) x2f(x)+x(f(x))2=2x^2 f(x) + x (f(x))^2 = 2 and f(x)+x2<0f(x) + \frac{x}{2} < 0.
We know that f(x)=x2±x4+8x2xf(x) = \frac{-x^2 \pm \sqrt{x^4 + 8x}}{2x}. Also, f(x)<x2f(x) < -\frac{x}{2}.
So, x2±x4+8x2x<x2\frac{-x^2 \pm \sqrt{x^4 + 8x}}{2x} < -\frac{x}{2}.
Multiply by 2x. If x>0x > 0, x2±x4+8x<x2-x^2 \pm \sqrt{x^4 + 8x} < -x^2 which implies ±x4+8x<0\pm \sqrt{x^4 + 8x} < 0. Then x4+8x<0-\sqrt{x^4 + 8x} < 0, so we only consider f(x)=x2x4+8x2xf(x) = \frac{-x^2 - \sqrt{x^4 + 8x}}{2x}.
If x<0x < 0, then x2±x4+8x>x2-x^2 \pm \sqrt{x^4 + 8x} > -x^2 which implies ±x4+8x>0\pm \sqrt{x^4 + 8x} > 0. Then x4+8x>0\sqrt{x^4 + 8x} > 0, so we only consider f(x)=x2+x4+8x2xf(x) = \frac{-x^2 + \sqrt{x^4 + 8x}}{2x}.

3. a) $f(x) = \sqrt{\frac{ln(x^2 - 1)}{x^x - x}}$

We need ln(x21)xxx0\frac{ln(x^2 - 1)}{x^x - x} \geq 0. Also, x21>0x^2 - 1 > 0, so x2>1x^2 > 1 or x>1|x| > 1. xxx0x^x - x \neq 0.
Case 1: ln(x21)0ln(x^2 - 1) \geq 0 and xxx>0x^x - x > 0. ln(x21)0    x211    x22    x2ln(x^2 - 1) \geq 0 \implies x^2 - 1 \geq 1 \implies x^2 \geq 2 \implies |x| \geq \sqrt{2}.
Case 2: ln(x21)0ln(x^2 - 1) \leq 0 and xxx<0x^x - x < 0. ln(x21)0    x211    x22    x2ln(x^2 - 1) \leq 0 \implies x^2 - 1 \leq 1 \implies x^2 \leq 2 \implies |x| \leq \sqrt{2}.
Combining x>1|x| > 1 and x2|x| \geq \sqrt{2}, we get x2x \geq \sqrt{2} or x2x \leq -\sqrt{2}. xxx>0    xx>xx^x - x > 0 \implies x^x > x.
Combining x>1|x| > 1 and x2|x| \leq \sqrt{2}, we get 1<x21 < |x| \leq \sqrt{2}. xxx<0    xx<xx^x - x < 0 \implies x^x < x.
b) h(x)=(2x)x(2x)x6h(x) = \sqrt[6]{(\sqrt{2x})^x - (2x)^{\sqrt{x}}}
We need (2x)x(2x)x0(\sqrt{2x})^x - (2x)^{\sqrt{x}} \geq 0, which means (2x)x(2x)x(\sqrt{2x})^x \geq (2x)^{\sqrt{x}}. Also, 2x02x \geq 0, so x0x \geq 0.
(2x)x(2x)x    (2x)x/2(2x)x(\sqrt{2x})^x \geq (2x)^{\sqrt{x}} \implies (2x)^{x/2} \geq (2x)^{\sqrt{x}}. If 2x>12x > 1, x/2xx/2 \geq \sqrt{x}, so x2/4xx^2/4 \geq x, x24xx^2 \geq 4x, x4x \geq 4. If 0<2x<10 < 2x < 1, x/2xx/2 \leq \sqrt{x}, so 0x<1/20 \leq x < 1/2. Thus the domain is [4,)[0,1/2)[4, \infty) \cup [0, 1/2). However, we must exclude the case where 2x=12x=1, since then 11/2111^{1/2} \ge 1^1 is valid. x=1/2x = 1/2 must be included. Thus the domain is [4,)[0,1/2][4, \infty) \cup [0, 1/2]. Also when x=0x = 0, then the domain is valid, so the domain is x=0[4,)[0,1/2]x = 0 \cup [4,\infty) \cup [0, 1/2]. This gives [0,1/2][4,)[0,1/2] \cup [4,\infty).

3. Final Answer

1. a) Not a function. $f = \{(x, 0) \mid x \in Z\}$

b) Not a function. f={(x,0)xA}f = \{(x, 0) \mid x \in A\}
c) Function. R=R = \emptyset
d) Not a function. f={(1,1),(2,0),(3,1),(4,1)}f = \{(1, -1), (2, 0), (3, 1), (4, -1)\}

2. a) Not a function.

b) Domain: [2,)[-2, \infty)

3. a) $\{x \in R \mid (x \leq -\sqrt{2} \text{ or } x \geq \sqrt{2}) \text{ and } x^x > x\} \cup \{x \in R \mid (1 < |x| \leq \sqrt{2}) \text{ and } x^x < x\}$

b) [0,12][4,)[0, \frac{1}{2}] \cup [4, \infty)

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1