We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

AnalysisIntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1

1. Problem Description

We are asked to evaluate the integral:
e2xe3x8dx\int \frac{e^{2x}}{e^{3x}-8} dx

2. Solution Steps

Let u=exu = e^x. Then u2=e2xu^2 = e^{2x} and u3=e3xu^3 = e^{3x}. Also, du=exdxdu = e^x dx, so dx=duex=duudx = \frac{du}{e^x} = \frac{du}{u}.
Substituting these into the integral, we have
e2xe3x8dx=u2u38duu=uu38du\int \frac{e^{2x}}{e^{3x}-8} dx = \int \frac{u^2}{u^3-8} \frac{du}{u} = \int \frac{u}{u^3-8} du.
Now, let u38=(u2)(u2+2u+4)u^3 - 8 = (u-2)(u^2 + 2u + 4).
So, we have to evaluate u(u2)(u2+2u+4)du\int \frac{u}{(u-2)(u^2 + 2u + 4)} du.
We use partial fraction decomposition:
u(u2)(u2+2u+4)=Au2+Bu+Cu2+2u+4\frac{u}{(u-2)(u^2+2u+4)} = \frac{A}{u-2} + \frac{Bu+C}{u^2+2u+4}.
Multiplying both sides by (u2)(u2+2u+4)(u-2)(u^2+2u+4) yields:
u=A(u2+2u+4)+(Bu+C)(u2)u = A(u^2+2u+4) + (Bu+C)(u-2)
u=Au2+2Au+4A+Bu22Bu+Cu2Cu = Au^2 + 2Au + 4A + Bu^2 - 2Bu + Cu - 2C
u=(A+B)u2+(2A2B+C)u+(4A2C)u = (A+B)u^2 + (2A-2B+C)u + (4A-2C).
Equating coefficients, we have the following system of equations:
A+B=0A+B = 0
2A2B+C=12A-2B+C = 1
4A2C=04A-2C = 0
From the first equation, B=AB = -A. From the third equation, 2C=4A2C = 4A, so C=2AC = 2A. Substituting these into the second equation, we get
2A2(A)+2A=12A - 2(-A) + 2A = 1
2A+2A+2A=12A + 2A + 2A = 1
6A=16A = 1
A=16A = \frac{1}{6}
Then B=16B = -\frac{1}{6} and C=26=13C = \frac{2}{6} = \frac{1}{3}.
Thus, the integral becomes
16u2+16u+13u2+2u+4du=161u2du+16u+13u2+2u+4du\int \frac{\frac{1}{6}}{u-2} + \frac{-\frac{1}{6}u+\frac{1}{3}}{u^2+2u+4} du = \frac{1}{6} \int \frac{1}{u-2} du + \int \frac{-\frac{1}{6}u+\frac{1}{3}}{u^2+2u+4} du
=16lnu2+16u+13u2+2u+4du= \frac{1}{6} \ln|u-2| + \int \frac{-\frac{1}{6}u+\frac{1}{3}}{u^2+2u+4} du.
Let I=16u+13u2+2u+4du=16u2u2+2u+4duI = \int \frac{-\frac{1}{6}u+\frac{1}{3}}{u^2+2u+4} du = -\frac{1}{6} \int \frac{u-2}{u^2+2u+4} du.
We want to rewrite the numerator as a multiple of the derivative of the denominator, which is 2u+22u+2.
u2=k(2u+2)+lu-2 = k(2u+2) + l
u2=2ku+2k+lu-2 = 2ku + 2k + l
2k=12k = 1, so k=12k = \frac{1}{2}.
2k+l=22k+l = -2, so 1+l=21+l = -2, which means l=3l=-3.
Therefore, u2=12(2u+2)3u-2 = \frac{1}{2}(2u+2) - 3.
So, I=1612(2u+2)3u2+2u+4du=1122u+2u2+2u+4du+121u2+2u+4duI = -\frac{1}{6} \int \frac{\frac{1}{2}(2u+2)-3}{u^2+2u+4} du = -\frac{1}{12} \int \frac{2u+2}{u^2+2u+4} du + \frac{1}{2} \int \frac{1}{u^2+2u+4} du
I=112lnu2+2u+4+121(u+1)2+3duI = -\frac{1}{12} \ln|u^2+2u+4| + \frac{1}{2} \int \frac{1}{(u+1)^2+3} du.
For the last integral, we let v=u+1v = u+1, so dv=dudv = du.
Then 1v2+3dv=13arctan(v3)+C=13arctan(u+13)+C\int \frac{1}{v^2+3} dv = \frac{1}{\sqrt{3}} \arctan\left(\frac{v}{\sqrt{3}}\right) + C = \frac{1}{\sqrt{3}} \arctan\left(\frac{u+1}{\sqrt{3}}\right) + C.
So I=112lnu2+2u+4+123arctan(u+13)+CI = -\frac{1}{12} \ln|u^2+2u+4| + \frac{1}{2\sqrt{3}} \arctan\left(\frac{u+1}{\sqrt{3}}\right) + C.
Thus, the original integral becomes
16lnu2112lnu2+2u+4+123arctan(u+13)+C\frac{1}{6} \ln|u-2| -\frac{1}{12} \ln|u^2+2u+4| + \frac{1}{2\sqrt{3}} \arctan\left(\frac{u+1}{\sqrt{3}}\right) + C
=16lnex2112lne2x+2ex+4+123arctan(ex+13)+C=\frac{1}{6} \ln|e^x-2| -\frac{1}{12} \ln|e^{2x}+2e^x+4| + \frac{1}{2\sqrt{3}} \arctan\left(\frac{e^x+1}{\sqrt{3}}\right) + C.

3. Final Answer

16lnex2112ln(e2x+2ex+4)+123arctan(ex+13)+C\frac{1}{6} \ln|e^x-2| - \frac{1}{12} \ln(e^{2x}+2e^x+4) + \frac{1}{2\sqrt{3}} \arctan\left(\frac{e^x+1}{\sqrt{3}}\right) + C

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29