Let u=ex. Then du=exdx. The integral becomes
∫u3−81du. We can factor the denominator as a difference of cubes:
u3−8=(u−2)(u2+2u+4). We perform a partial fraction decomposition:
u3−81=u−2A+u2+2u+4Bu+C. Multiplying both sides by u3−8 gives 1=A(u2+2u+4)+(Bu+C)(u−2) 1=Au2+2Au+4A+Bu2−2Bu+Cu−2C 1=(A+B)u2+(2A−2B+C)u+(4A−2C) Comparing coefficients:
2A−2B+C=0 4A−2C=1 From the first equation, B=−A. Substituting into the second equation gives: 2A−2(−A)+C=0 Substituting into the third equation:
4A−2(−4A)=1 4A+8A=1 A=121 Then B=−121 and C=−4(121)=−31. So the integral becomes:
∫(u−21/12+u2+2u+4(−1/12)u−1/3)du =121∫u−21du−121∫u2+2u+4u+4du For the second integral, we complete the square in the denominator:
u2+2u+4=(u+1)2+3. We want to rewrite the numerator in terms of the derivative of the inside:
u+4=21(2u+2)+3 So ∫u2+2u+4u+4du=∫u2+2u+4(1/2)(2u+2)+3du=21∫u2+2u+42u+2du+3∫(u+1)2+31du =21ln(u2+2u+4)+3⋅31arctan(3u+1) =21ln(u2+2u+4)+3arctan(3u+1) So the original integral becomes:
121ln∣u−2∣−121(21ln(u2+2u+4)+3arctan(3u+1))+C =121ln∣u−2∣−241ln(u2+2u+4)−123arctan(3u+1)+C Substituting back u=ex: 121ln∣ex−2∣−241ln(e2x+2ex+4)−123arctan(3ex+1)+C