We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

AnalysisIntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

1. Problem Description

We need to evaluate the integral exe3x8dx\int \frac{e^x}{e^{3x}-8} dx.

2. Solution Steps

Let u=exu = e^x. Then du=exdxdu = e^x dx.
The integral becomes
1u38du\int \frac{1}{u^3 - 8} du.
We can factor the denominator as a difference of cubes:
u38=(u2)(u2+2u+4)u^3 - 8 = (u-2)(u^2 + 2u + 4).
We perform a partial fraction decomposition:
1u38=Au2+Bu+Cu2+2u+4\frac{1}{u^3 - 8} = \frac{A}{u-2} + \frac{Bu+C}{u^2+2u+4}.
Multiplying both sides by u38u^3 - 8 gives
1=A(u2+2u+4)+(Bu+C)(u2)1 = A(u^2+2u+4) + (Bu+C)(u-2)
1=Au2+2Au+4A+Bu22Bu+Cu2C1 = Au^2 + 2Au + 4A + Bu^2 - 2Bu + Cu - 2C
1=(A+B)u2+(2A2B+C)u+(4A2C)1 = (A+B)u^2 + (2A - 2B + C)u + (4A - 2C)
Comparing coefficients:
A+B=0A+B = 0
2A2B+C=02A - 2B + C = 0
4A2C=14A - 2C = 1
From the first equation, B=AB = -A. Substituting into the second equation gives:
2A2(A)+C=02A - 2(-A) + C = 0
4A+C=04A + C = 0
C=4AC = -4A
Substituting into the third equation:
4A2(4A)=14A - 2(-4A) = 1
4A+8A=14A + 8A = 1
12A=112A = 1
A=112A = \frac{1}{12}
Then B=112B = -\frac{1}{12} and C=4(112)=13C = -4(\frac{1}{12}) = -\frac{1}{3}.
So the integral becomes:
(1/12u2+(1/12)u1/3u2+2u+4)du\int \left( \frac{1/12}{u-2} + \frac{(-1/12)u - 1/3}{u^2+2u+4} \right) du
=1121u2du112u+4u2+2u+4du= \frac{1}{12} \int \frac{1}{u-2} du - \frac{1}{12} \int \frac{u+4}{u^2+2u+4} du
For the second integral, we complete the square in the denominator:
u2+2u+4=(u+1)2+3u^2+2u+4 = (u+1)^2 + 3.
We want to rewrite the numerator in terms of the derivative of the inside:
u+4=12(2u+2)+3u+4 = \frac{1}{2}(2u+2) + 3
So u+4u2+2u+4du=(1/2)(2u+2)+3u2+2u+4du=122u+2u2+2u+4du+31(u+1)2+3du\int \frac{u+4}{u^2+2u+4} du = \int \frac{(1/2)(2u+2) + 3}{u^2+2u+4} du = \frac{1}{2} \int \frac{2u+2}{u^2+2u+4} du + 3\int \frac{1}{(u+1)^2+3} du
=12ln(u2+2u+4)+313arctan(u+13)= \frac{1}{2} \ln(u^2+2u+4) + 3 \cdot \frac{1}{\sqrt{3}} \arctan \left( \frac{u+1}{\sqrt{3}} \right)
=12ln(u2+2u+4)+3arctan(u+13)= \frac{1}{2} \ln(u^2+2u+4) + \sqrt{3} \arctan \left( \frac{u+1}{\sqrt{3}} \right)
So the original integral becomes:
112lnu2112(12ln(u2+2u+4)+3arctan(u+13))+C\frac{1}{12} \ln|u-2| - \frac{1}{12} \left( \frac{1}{2} \ln(u^2+2u+4) + \sqrt{3} \arctan \left( \frac{u+1}{\sqrt{3}} \right) \right) + C
=112lnu2124ln(u2+2u+4)312arctan(u+13)+C= \frac{1}{12} \ln|u-2| - \frac{1}{24} \ln(u^2+2u+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{u+1}{\sqrt{3}} \right) + C
Substituting back u=exu = e^x:
112lnex2124ln(e2x+2ex+4)312arctan(ex+13)+C\frac{1}{12} \ln|e^x-2| - \frac{1}{24} \ln(e^{2x}+2e^x+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{e^x+1}{\sqrt{3}} \right) + C

3. Final Answer

112lnex2124ln(e2x+2ex+4)312arctan(ex+13)+C\frac{1}{12} \ln|e^x-2| - \frac{1}{24} \ln(e^{2x}+2e^x+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{e^x+1}{\sqrt{3}} \right) + C

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3