We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

AnalysisIntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

1. Problem Description

We need to evaluate the integral exe3x8dx\int \frac{e^x}{e^{3x}-8} dx.

2. Solution Steps

Let u=exu = e^x. Then du=exdxdu = e^x dx.
The integral becomes
1u38du\int \frac{1}{u^3 - 8} du.
We can factor the denominator as a difference of cubes:
u38=(u2)(u2+2u+4)u^3 - 8 = (u-2)(u^2 + 2u + 4).
We perform a partial fraction decomposition:
1u38=Au2+Bu+Cu2+2u+4\frac{1}{u^3 - 8} = \frac{A}{u-2} + \frac{Bu+C}{u^2+2u+4}.
Multiplying both sides by u38u^3 - 8 gives
1=A(u2+2u+4)+(Bu+C)(u2)1 = A(u^2+2u+4) + (Bu+C)(u-2)
1=Au2+2Au+4A+Bu22Bu+Cu2C1 = Au^2 + 2Au + 4A + Bu^2 - 2Bu + Cu - 2C
1=(A+B)u2+(2A2B+C)u+(4A2C)1 = (A+B)u^2 + (2A - 2B + C)u + (4A - 2C)
Comparing coefficients:
A+B=0A+B = 0
2A2B+C=02A - 2B + C = 0
4A2C=14A - 2C = 1
From the first equation, B=AB = -A. Substituting into the second equation gives:
2A2(A)+C=02A - 2(-A) + C = 0
4A+C=04A + C = 0
C=4AC = -4A
Substituting into the third equation:
4A2(4A)=14A - 2(-4A) = 1
4A+8A=14A + 8A = 1
12A=112A = 1
A=112A = \frac{1}{12}
Then B=112B = -\frac{1}{12} and C=4(112)=13C = -4(\frac{1}{12}) = -\frac{1}{3}.
So the integral becomes:
(1/12u2+(1/12)u1/3u2+2u+4)du\int \left( \frac{1/12}{u-2} + \frac{(-1/12)u - 1/3}{u^2+2u+4} \right) du
=1121u2du112u+4u2+2u+4du= \frac{1}{12} \int \frac{1}{u-2} du - \frac{1}{12} \int \frac{u+4}{u^2+2u+4} du
For the second integral, we complete the square in the denominator:
u2+2u+4=(u+1)2+3u^2+2u+4 = (u+1)^2 + 3.
We want to rewrite the numerator in terms of the derivative of the inside:
u+4=12(2u+2)+3u+4 = \frac{1}{2}(2u+2) + 3
So u+4u2+2u+4du=(1/2)(2u+2)+3u2+2u+4du=122u+2u2+2u+4du+31(u+1)2+3du\int \frac{u+4}{u^2+2u+4} du = \int \frac{(1/2)(2u+2) + 3}{u^2+2u+4} du = \frac{1}{2} \int \frac{2u+2}{u^2+2u+4} du + 3\int \frac{1}{(u+1)^2+3} du
=12ln(u2+2u+4)+313arctan(u+13)= \frac{1}{2} \ln(u^2+2u+4) + 3 \cdot \frac{1}{\sqrt{3}} \arctan \left( \frac{u+1}{\sqrt{3}} \right)
=12ln(u2+2u+4)+3arctan(u+13)= \frac{1}{2} \ln(u^2+2u+4) + \sqrt{3} \arctan \left( \frac{u+1}{\sqrt{3}} \right)
So the original integral becomes:
112lnu2112(12ln(u2+2u+4)+3arctan(u+13))+C\frac{1}{12} \ln|u-2| - \frac{1}{12} \left( \frac{1}{2} \ln(u^2+2u+4) + \sqrt{3} \arctan \left( \frac{u+1}{\sqrt{3}} \right) \right) + C
=112lnu2124ln(u2+2u+4)312arctan(u+13)+C= \frac{1}{12} \ln|u-2| - \frac{1}{24} \ln(u^2+2u+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{u+1}{\sqrt{3}} \right) + C
Substituting back u=exu = e^x:
112lnex2124ln(e2x+2ex+4)312arctan(ex+13)+C\frac{1}{12} \ln|e^x-2| - \frac{1}{24} \ln(e^{2x}+2e^x+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{e^x+1}{\sqrt{3}} \right) + C

3. Final Answer

112lnex2124ln(e2x+2ex+4)312arctan(ex+13)+C\frac{1}{12} \ln|e^x-2| - \frac{1}{24} \ln(e^{2x}+2e^x+4) - \frac{\sqrt{3}}{12} \arctan \left( \frac{e^x+1}{\sqrt{3}} \right) + C

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29