The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

AnalysisIntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

1. Problem Description

The problem asks us to evaluate the integral dx2x14x2\int -\frac{dx}{2x\sqrt{1-4x^2}}.

2. Solution Steps

We want to evaluate the integral
dx2x14x2=12dxx14x2 \int -\frac{dx}{2x\sqrt{1-4x^2}} = -\frac{1}{2} \int \frac{dx}{x\sqrt{1-4x^2}}
Let u=2xu = 2x, so du=2dxdu = 2dx, and dx=12dudx = \frac{1}{2} du. The integral becomes
1212du12u1u2=12duu1u2 -\frac{1}{2} \int \frac{\frac{1}{2} du}{\frac{1}{2} u \sqrt{1-u^2}} = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}}
We know that
duua2u2=1alna+a2u2u+C \int \frac{du}{u\sqrt{a^2-u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2-u^2}}{u} \right| + C
In our case, a=1a=1, so we have
duu1u2=ln1+1u2u+C \int \frac{du}{u\sqrt{1-u^2}} = -\ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| + C
Thus,
12duu1u2=12(ln1+1u2u)+C=12ln1+1u2u+C -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}} = -\frac{1}{2} \left( -\ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| \right) + C = \frac{1}{2} \ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| + C
Substitute back u=2xu = 2x, so we get
12ln1+14x22x+C \frac{1}{2} \ln \left| \frac{1 + \sqrt{1-4x^2}}{2x} \right| + C
We can use the property of logarithms to write this as
ln1+14x22x+C \ln \sqrt{\left| \frac{1 + \sqrt{1-4x^2}}{2x} \right|} + C
Another approach:
Let 2x=sinθ2x = \sin \theta, so x=12sinθx = \frac{1}{2} \sin \theta, and dx=12cosθdθdx = \frac{1}{2} \cos \theta \, d\theta. Then 14x2=1sin2θ=cosθ\sqrt{1-4x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta. The integral becomes
dx2x14x2=12cosθdθsinθcosθ=12dθsinθ=12cscθdθ \int -\frac{dx}{2x\sqrt{1-4x^2}} = \int -\frac{\frac{1}{2} \cos \theta \, d\theta}{\sin \theta \cos \theta} = -\frac{1}{2} \int \frac{d\theta}{\sin \theta} = -\frac{1}{2} \int \csc \theta \, d\theta
We know that cscθdθ=lncscθ+cotθ+C\int \csc \theta \, d\theta = -\ln|\csc \theta + \cot \theta| + C, so
12cscθdθ=12lncscθ+cotθ+C -\frac{1}{2} \int \csc \theta \, d\theta = \frac{1}{2} \ln|\csc \theta + \cot \theta| + C
Since sinθ=2x\sin \theta = 2x, we have cscθ=12x\csc \theta = \frac{1}{2x}. Also, cotθ=1sin2θsinθ=14x22x\cot \theta = \frac{\sqrt{1-\sin^2 \theta}}{\sin \theta} = \frac{\sqrt{1-4x^2}}{2x}. Thus,
12lncscθ+cotθ+C=12ln12x+14x22x+C=12ln1+14x22x+C \frac{1}{2} \ln|\csc \theta + \cot \theta| + C = \frac{1}{2} \ln\left|\frac{1}{2x} + \frac{\sqrt{1-4x^2}}{2x}\right| + C = \frac{1}{2} \ln\left|\frac{1 + \sqrt{1-4x^2}}{2x}\right| + C

3. Final Answer

12ln1+14x22x+C\frac{1}{2} \ln\left|\frac{1 + \sqrt{1-4x^2}}{2x}\right| + C

Related problems in "Analysis"

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29