We want to evaluate the integral
∫−2x1−4x2dx=−21∫x1−4x2dx Let u=2x, so du=2dx, and dx=21du. The integral becomes −21∫21u1−u221du=−21∫u1−u2du We know that
∫ua2−u2du=−a1lnua+a2−u2+C In our case, a=1, so we have ∫u1−u2du=−lnu1+1−u2+C Thus,
−21∫u1−u2du=−21(−lnu1+1−u2)+C=21lnu1+1−u2+C Substitute back u=2x, so we get 21ln2x1+1−4x2+C We can use the property of logarithms to write this as
ln2x1+1−4x2+C Another approach:
Let 2x=sinθ, so x=21sinθ, and dx=21cosθdθ. Then 1−4x2=1−sin2θ=cosθ. The integral becomes ∫−2x1−4x2dx=∫−sinθcosθ21cosθdθ=−21∫sinθdθ=−21∫cscθdθ We know that ∫cscθdθ=−ln∣cscθ+cotθ∣+C, so −21∫cscθdθ=21ln∣cscθ+cotθ∣+C Since sinθ=2x, we have cscθ=2x1. Also, cotθ=sinθ1−sin2θ=2x1−4x2. Thus, 21ln∣cscθ+cotθ∣+C=21ln2x1+2x1−4x2+C=21ln2x1+1−4x2+C