The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

AnalysisIntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

1. Problem Description

The problem asks us to evaluate the integral dx2x14x2\int -\frac{dx}{2x\sqrt{1-4x^2}}.

2. Solution Steps

We want to evaluate the integral
dx2x14x2=12dxx14x2 \int -\frac{dx}{2x\sqrt{1-4x^2}} = -\frac{1}{2} \int \frac{dx}{x\sqrt{1-4x^2}}
Let u=2xu = 2x, so du=2dxdu = 2dx, and dx=12dudx = \frac{1}{2} du. The integral becomes
1212du12u1u2=12duu1u2 -\frac{1}{2} \int \frac{\frac{1}{2} du}{\frac{1}{2} u \sqrt{1-u^2}} = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}}
We know that
duua2u2=1alna+a2u2u+C \int \frac{du}{u\sqrt{a^2-u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2-u^2}}{u} \right| + C
In our case, a=1a=1, so we have
duu1u2=ln1+1u2u+C \int \frac{du}{u\sqrt{1-u^2}} = -\ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| + C
Thus,
12duu1u2=12(ln1+1u2u)+C=12ln1+1u2u+C -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}} = -\frac{1}{2} \left( -\ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| \right) + C = \frac{1}{2} \ln \left| \frac{1 + \sqrt{1-u^2}}{u} \right| + C
Substitute back u=2xu = 2x, so we get
12ln1+14x22x+C \frac{1}{2} \ln \left| \frac{1 + \sqrt{1-4x^2}}{2x} \right| + C
We can use the property of logarithms to write this as
ln1+14x22x+C \ln \sqrt{\left| \frac{1 + \sqrt{1-4x^2}}{2x} \right|} + C
Another approach:
Let 2x=sinθ2x = \sin \theta, so x=12sinθx = \frac{1}{2} \sin \theta, and dx=12cosθdθdx = \frac{1}{2} \cos \theta \, d\theta. Then 14x2=1sin2θ=cosθ\sqrt{1-4x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta. The integral becomes
dx2x14x2=12cosθdθsinθcosθ=12dθsinθ=12cscθdθ \int -\frac{dx}{2x\sqrt{1-4x^2}} = \int -\frac{\frac{1}{2} \cos \theta \, d\theta}{\sin \theta \cos \theta} = -\frac{1}{2} \int \frac{d\theta}{\sin \theta} = -\frac{1}{2} \int \csc \theta \, d\theta
We know that cscθdθ=lncscθ+cotθ+C\int \csc \theta \, d\theta = -\ln|\csc \theta + \cot \theta| + C, so
12cscθdθ=12lncscθ+cotθ+C -\frac{1}{2} \int \csc \theta \, d\theta = \frac{1}{2} \ln|\csc \theta + \cot \theta| + C
Since sinθ=2x\sin \theta = 2x, we have cscθ=12x\csc \theta = \frac{1}{2x}. Also, cotθ=1sin2θsinθ=14x22x\cot \theta = \frac{\sqrt{1-\sin^2 \theta}}{\sin \theta} = \frac{\sqrt{1-4x^2}}{2x}. Thus,
12lncscθ+cotθ+C=12ln12x+14x22x+C=12ln1+14x22x+C \frac{1}{2} \ln|\csc \theta + \cot \theta| + C = \frac{1}{2} \ln\left|\frac{1}{2x} + \frac{\sqrt{1-4x^2}}{2x}\right| + C = \frac{1}{2} \ln\left|\frac{1 + \sqrt{1-4x^2}}{2x}\right| + C

3. Final Answer

12ln1+14x22x+C\frac{1}{2} \ln\left|\frac{1 + \sqrt{1-4x^2}}{2x}\right| + C

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3