We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find the antiderivative and express the result in terms of inverse hyperbolic secant function ($\text{sech}^{-1}$).

AnalysisIntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

1. Problem Description

We are asked to evaluate the indefinite integral dx2x14x2\int -\frac{dx}{2x\sqrt{1-4x^2}}. We need to find the antiderivative and express the result in terms of inverse hyperbolic secant function (sech1\text{sech}^{-1}).

2. Solution Steps

Let I=dx2x14x2I = \int -\frac{dx}{2x\sqrt{1-4x^2}}.
First, let's make a substitution: let u=2xu = 2x. Then du=2dxdu = 2dx, so dx=12dudx = \frac{1}{2} du.
Substituting into the integral:
I=12du2(12u)1u2=12duu1u2=12duu1u2I = \int -\frac{\frac{1}{2}du}{2(\frac{1}{2}u)\sqrt{1-u^2}} = \int -\frac{\frac{1}{2}du}{u\sqrt{1-u^2}} = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}}.
Recall the formula for the integral of 1xa2x2\frac{1}{x\sqrt{a^2-x^2}}:
dxxa2x2=1asech1(xa)+C\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a}\text{sech}^{-1}(\frac{x}{a}) + C
In our case, we have duu1u2\int \frac{du}{u\sqrt{1-u^2}}, which is equivalent to the above formula with a=1a=1.
Therefore, duu1u2=sech1(u)+C\int \frac{du}{u\sqrt{1-u^2}} = -\text{sech}^{-1}(u) + C.
Substituting this back into our original integral:
I=12duu1u2=12(sech1(u))+C=12sech1(u)+CI = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}} = -\frac{1}{2} (-\text{sech}^{-1}(u)) + C = \frac{1}{2}\text{sech}^{-1}(u) + C.
Now, substitute back u=2xu = 2x:
I=12sech1(2x)+CI = \frac{1}{2} \text{sech}^{-1}(2x) + C.

3. Final Answer

The integral evaluates to 12sech1(2x)+C\frac{1}{2} \text{sech}^{-1}(2x) + C. Therefore, the correct answer is A.

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29