We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find the antiderivative and express the result in terms of inverse hyperbolic secant function ($\text{sech}^{-1}$).

AnalysisIntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

1. Problem Description

We are asked to evaluate the indefinite integral dx2x14x2\int -\frac{dx}{2x\sqrt{1-4x^2}}. We need to find the antiderivative and express the result in terms of inverse hyperbolic secant function (sech1\text{sech}^{-1}).

2. Solution Steps

Let I=dx2x14x2I = \int -\frac{dx}{2x\sqrt{1-4x^2}}.
First, let's make a substitution: let u=2xu = 2x. Then du=2dxdu = 2dx, so dx=12dudx = \frac{1}{2} du.
Substituting into the integral:
I=12du2(12u)1u2=12duu1u2=12duu1u2I = \int -\frac{\frac{1}{2}du}{2(\frac{1}{2}u)\sqrt{1-u^2}} = \int -\frac{\frac{1}{2}du}{u\sqrt{1-u^2}} = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}}.
Recall the formula for the integral of 1xa2x2\frac{1}{x\sqrt{a^2-x^2}}:
dxxa2x2=1asech1(xa)+C\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a}\text{sech}^{-1}(\frac{x}{a}) + C
In our case, we have duu1u2\int \frac{du}{u\sqrt{1-u^2}}, which is equivalent to the above formula with a=1a=1.
Therefore, duu1u2=sech1(u)+C\int \frac{du}{u\sqrt{1-u^2}} = -\text{sech}^{-1}(u) + C.
Substituting this back into our original integral:
I=12duu1u2=12(sech1(u))+C=12sech1(u)+CI = -\frac{1}{2} \int \frac{du}{u\sqrt{1-u^2}} = -\frac{1}{2} (-\text{sech}^{-1}(u)) + C = \frac{1}{2}\text{sech}^{-1}(u) + C.
Now, substitute back u=2xu = 2x:
I=12sech1(2x)+CI = \frac{1}{2} \text{sech}^{-1}(2x) + C.

3. Final Answer

The integral evaluates to 12sech1(2x)+C\frac{1}{2} \text{sech}^{-1}(2x) + C. Therefore, the correct answer is A.

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3