First, rewrite the differential equation as:
(x2+4)dxdy+xy2+x=0 (x2+4)dxdy=−x(y2+1) y2+1dy=−x2+4xdx Now, integrate both sides:
∫y2+1dy=∫−x2+4xdx The left integral is arctan(y). For the right integral, let u=x2+4, so du=2xdx, and xdx=21du. ∫−x2+4xdx=−∫u121du=−21∫u1du=−21ln∣u∣+C=−21ln(x2+4)+C So, we have:
arctan(y)=−21ln(x2+4)+C Now, apply the initial condition y(1)=3: arctan(3)=−21ln(12+4)+C arctan(3)=−21ln(5)+C C=arctan(3)+21ln(5) So the solution is:
arctan(y)=−21ln(x2+4)+arctan(3)+21ln(5) arctan(y)=arctan(3)+21ln(5)−21ln(x2+4) arctan(y)=arctan(3)+21ln(x2+45) y=tan(arctan(3)+21ln(x2+45))