We are given a first-order differential equation $(x^2 + 4)y' + xy^2 + x = 0$ with the initial condition $y(1) = 3$. We need to find the solution to this initial value problem.

Applied MathematicsDifferential EquationsFirst-Order Differential EquationsInitial Value ProblemIntegrationSeparable Equations
2025/3/11

1. Problem Description

We are given a first-order differential equation (x2+4)y+xy2+x=0(x^2 + 4)y' + xy^2 + x = 0 with the initial condition y(1)=3y(1) = 3. We need to find the solution to this initial value problem.

2. Solution Steps

First, rewrite the differential equation as:
(x2+4)dydx+xy2+x=0(x^2 + 4)\frac{dy}{dx} + xy^2 + x = 0
(x2+4)dydx=x(y2+1)(x^2 + 4)\frac{dy}{dx} = -x(y^2 + 1)
dyy2+1=xx2+4dx\frac{dy}{y^2 + 1} = -\frac{x}{x^2 + 4} dx
Now, integrate both sides:
dyy2+1=xx2+4dx\int \frac{dy}{y^2 + 1} = \int -\frac{x}{x^2 + 4} dx
The left integral is arctan(y)\arctan(y). For the right integral, let u=x2+4u = x^2 + 4, so du=2xdxdu = 2x dx, and xdx=12dux dx = \frac{1}{2} du.
xx2+4dx=1u12du=121udu=12lnu+C=12ln(x2+4)+C\int -\frac{x}{x^2 + 4} dx = -\int \frac{1}{u} \frac{1}{2} du = -\frac{1}{2} \int \frac{1}{u} du = -\frac{1}{2} \ln|u| + C = -\frac{1}{2} \ln(x^2 + 4) + C
So, we have:
arctan(y)=12ln(x2+4)+C\arctan(y) = -\frac{1}{2} \ln(x^2 + 4) + C
Now, apply the initial condition y(1)=3y(1) = 3:
arctan(3)=12ln(12+4)+C\arctan(3) = -\frac{1}{2} \ln(1^2 + 4) + C
arctan(3)=12ln(5)+C\arctan(3) = -\frac{1}{2} \ln(5) + C
C=arctan(3)+12ln(5)C = \arctan(3) + \frac{1}{2} \ln(5)
So the solution is:
arctan(y)=12ln(x2+4)+arctan(3)+12ln(5)\arctan(y) = -\frac{1}{2} \ln(x^2 + 4) + \arctan(3) + \frac{1}{2} \ln(5)
arctan(y)=arctan(3)+12ln(5)12ln(x2+4)\arctan(y) = \arctan(3) + \frac{1}{2} \ln(5) - \frac{1}{2} \ln(x^2 + 4)
arctan(y)=arctan(3)+12ln(5x2+4)\arctan(y) = \arctan(3) + \frac{1}{2} \ln(\frac{5}{x^2 + 4})
y=tan(arctan(3)+12ln(5x2+4))y = \tan\left( \arctan(3) + \frac{1}{2} \ln\left(\frac{5}{x^2 + 4}\right) \right)

3. Final Answer

y=tan(arctan(3)+12ln(5x2+4))y = \tan\left( \arctan(3) + \frac{1}{2} \ln\left(\frac{5}{x^2 + 4}\right) \right)

Related problems in "Applied Mathematics"

The problem provides a formula relating the final velocity ($v$) of an object to its initial velocit...

PhysicsKinematicsVelocityAccelerationFormula ApplicationSquare Roots
2025/6/10

The problem asks to calculate the final velocity of a moving car, given its initial velocity, accele...

KinematicsPhysicsEquations of MotionSquare RootsVelocity
2025/6/10

The problem asks us to calculate Laspeyres and Paasche indices for the cost of living in different A...

Index NumbersEconomicsLaspeyres IndexPaasche IndexPrice IndicesCircularity Test
2025/6/9

The problem provides data on prices and quantities of three raw materials (A, B, C) in two locations...

Index NumbersPrice IndexQuantity IndexLaspeyres IndexPaasche IndexFisher IndexEconomics
2025/6/9

The problem asks us to identify the statement that is demonstrably true based on the provided table ...

Data AnalysisRatioPercentageEconomic DataTrade Volume
2025/6/8

The problem asks us to estimate the total number of passengers transported by airline S, given that ...

EstimationWord ProblemUnits ConversionDivision
2025/6/8

The problem asks to calculate the approximate percentage increase in the manufacturing product shipm...

Percentage IncreaseData AnalysisArithmeticApproximation
2025/6/8

The problem asks us to find the approximate decrease in annual product sales per business establishm...

Data AnalysisStatisticsPercentage ChangeProblem Solving
2025/6/8

The problem asks us to estimate the value of $x$ from the graph, where $x$ corresponds to the "growt...

Graph AnalysisData InterpretationGrowth RateEstimation
2025/6/8

The problem describes a company's advertising budget $x$ and sales revenue $y$ (in millions of franc...

RegressionStatisticsCorrelation CoefficientLinear RegressionData Analysis
2025/6/7