This is a telescoping series. Let's write out the first few terms of the series:
∑k=2∞((k−1)23−k23)=((2−1)23−223)+((3−1)23−323)+((4−1)23−423)+… =(123−223)+(223−323)+(323−423)+… We can see that the terms are cancelling each other out.
Let Sn be the partial sum of the first n terms. Sn=∑k=2n+1((k−1)23−k23) Sn=(123−223)+(223−323)+⋯+(n23−(n+1)23) Sn=123−(n+1)23 Sn=3−(n+1)23 Now, we take the limit as n approaches infinity: limn→∞Sn=limn→∞(3−(n+1)23) =3−limn→∞(n+1)23 Since limn→∞(n+1)2=∞, we have =3−0=3