The problem asks to evaluate the infinite sum $\sum_{k=2}^{\infty} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right)$.

AnalysisInfinite SeriesTelescoping SeriesLimits
2025/3/6

1. Problem Description

The problem asks to evaluate the infinite sum k=2(3(k1)23k2)\sum_{k=2}^{\infty} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right).

2. Solution Steps

This is a telescoping series. Let's write out the first few terms of the series:
k=2(3(k1)23k2)=(3(21)2322)+(3(31)2332)+(3(41)2342)+ \sum_{k=2}^{\infty} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right) = \left( \frac{3}{(2-1)^2} - \frac{3}{2^2} \right) + \left( \frac{3}{(3-1)^2} - \frac{3}{3^2} \right) + \left( \frac{3}{(4-1)^2} - \frac{3}{4^2} \right) + \dots
=(312322)+(322332)+(332342)+ = \left( \frac{3}{1^2} - \frac{3}{2^2} \right) + \left( \frac{3}{2^2} - \frac{3}{3^2} \right) + \left( \frac{3}{3^2} - \frac{3}{4^2} \right) + \dots
We can see that the terms are cancelling each other out.
Let SnS_n be the partial sum of the first nn terms.
Sn=k=2n+1(3(k1)23k2) S_n = \sum_{k=2}^{n+1} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right)
Sn=(312322)+(322332)++(3n23(n+1)2) S_n = \left( \frac{3}{1^2} - \frac{3}{2^2} \right) + \left( \frac{3}{2^2} - \frac{3}{3^2} \right) + \dots + \left( \frac{3}{n^2} - \frac{3}{(n+1)^2} \right)
Sn=3123(n+1)2 S_n = \frac{3}{1^2} - \frac{3}{(n+1)^2}
Sn=33(n+1)2 S_n = 3 - \frac{3}{(n+1)^2}
Now, we take the limit as nn approaches infinity:
limnSn=limn(33(n+1)2) \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 3 - \frac{3}{(n+1)^2} \right)
=3limn3(n+1)2 = 3 - \lim_{n \to \infty} \frac{3}{(n+1)^2}
Since limn(n+1)2=\lim_{n \to \infty} (n+1)^2 = \infty, we have
=30=3 = 3 - 0 = 3

3. Final Answer

33

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29