2次方程式 $x^2 + 3(a-2)x + 5a - 7 = 0$ の解の一つが $-3$ であるとき、$a$ の値を求め、さらにこの方程式のもう一つの解を求める。

代数学二次方程式因数分解
2025/4/7

1. 問題の内容

2次方程式 x2+3(a2)x+5a7=0x^2 + 3(a-2)x + 5a - 7 = 0 の解の一つが 3-3 であるとき、aa の値を求め、さらにこの方程式のもう一つの解を求める。

2. 解き方の手順

(1) 解の一つが 3-3 であるから、x=3x = -3 を方程式に代入する。
(3)2+3(a2)(3)+5a7=0(-3)^2 + 3(a-2)(-3) + 5a - 7 = 0
(2) この式を整理して aa について解く。
99(a2)+5a7=09 - 9(a-2) + 5a - 7 = 0
99a+18+5a7=09 - 9a + 18 + 5a - 7 = 0
4a+20=0-4a + 20 = 0
4a=204a = 20
a=5a = 5
(3) a=5a = 5 を元の2次方程式に代入する。
x2+3(52)x+5(5)7=0x^2 + 3(5-2)x + 5(5) - 7 = 0
x2+3(3)x+257=0x^2 + 3(3)x + 25 - 7 = 0
x2+9x+18=0x^2 + 9x + 18 = 0
(4) この2次方程式を解く。
(x+3)(x+6)=0(x+3)(x+6) = 0
x=3,6x = -3, -6
よって、もう一つの解は 6-6 である。

3. 最終的な答え

a=5a=5
もう一つの解: 6-6

「代数学」の関連問題

与えられた式 $(a+5)(a^2 - 5a + 25)$ を展開して簡単にしなさい。

式の展開因数分解3乗の公式
2025/4/19

問題は、式 $(a+b)^2 (a^2 - ab + b^2)^2$ を展開し、簡略化することです。

式の展開因数分解多項式
2025/4/19

与えられた式 $(a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2$ を計算せよ。

式の展開多項式因数分解
2025/4/19

$(a-2)^3$ を展開してください。

式の展開二項定理代数
2025/4/19

与えられた関数 $y = 2x + 1$ に対して、指定された $x$ の値に対応する $y$ の値を求める問題です。具体的には、$x = 0$, $x = -1$, $x = \frac{1}{2}...

一次関数関数の値代入
2025/4/19

$\omega$ は1の3乗根のうち、実数でないものの1つである。このとき、次の式の値を求めよ。 (7) $\omega^2 + \omega + 1$ (8) $\omega^{10} + \ome...

複素数3乗根式の計算因数分解
2025/4/19

問題1:多項式 $P(x) = 2x^3 - 6x^2 - 3x + 4$ が与えられ、$x = 2 - i$ の時の $P(x)$ の値を求める問題です。そのために、まず、$x^2 + ax + b...

多項式複素数因数定理剰余の定理代数方程式
2025/4/19

与えられた式 $\frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{5}+\sqrt{3}}$ を計算し、簡単にしてください。

式の計算分母の有理化根号
2025/4/19

与えられた数式をそれぞれ計算し、最も簡単な形で表す。具体的には以下の9つの問題を解く。 (1) $3x \times (-2x)^2 \div x^3$ (2) $2a \times (3b)^2 \...

式の計算指数法則分数式
2025/4/19

与えられた4つの式を因数分解します。 (1) $x^3 - 1$ (2) $x^3 + 27a^3$ (3) $x^3 - 64$ (4) $125x^3 - 8y^3$

因数分解3次式
2025/4/19