$\sin\theta + \cos\theta = \frac{1}{2}$ のとき、以下の値を求めます。 * $\sin\theta\cos\theta$ * $\tan\theta + \frac{1}{\tan\theta}$ * $\sin^3\theta + \cos^3\theta$

解析学三角関数恒等式加法定理
2025/4/7

1. 問題の内容

sinθ+cosθ=12\sin\theta + \cos\theta = \frac{1}{2} のとき、以下の値を求めます。
* sinθcosθ\sin\theta\cos\theta
* tanθ+1tanθ\tan\theta + \frac{1}{\tan\theta}
* sin3θ+cos3θ\sin^3\theta + \cos^3\theta

2. 解き方の手順

(1) sinθcosθ\sin\theta\cos\theta の計算
sinθ+cosθ=12\sin\theta + \cos\theta = \frac{1}{2} の両辺を2乗します。
(sinθ+cosθ)2=(12)2(\sin\theta + \cos\theta)^2 = (\frac{1}{2})^2
sin2θ+2sinθcosθ+cos2θ=14\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}
sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1 なので、
1+2sinθcosθ=141 + 2\sin\theta\cos\theta = \frac{1}{4}
2sinθcosθ=141=342\sin\theta\cos\theta = \frac{1}{4} - 1 = -\frac{3}{4}
sinθcosθ=38\sin\theta\cos\theta = -\frac{3}{8}
(2) tanθ+1tanθ\tan\theta + \frac{1}{\tan\theta} の計算
tanθ+1tanθ=tanθ+cosθsinθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ\tan\theta + \frac{1}{\tan\theta} = \tan\theta + \frac{\cos\theta}{\sin\theta} = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} = \frac{1}{\sin\theta\cos\theta}
sinθcosθ=38\sin\theta\cos\theta = -\frac{3}{8} より、
tanθ+1tanθ=138=83\tan\theta + \frac{1}{\tan\theta} = \frac{1}{-\frac{3}{8}} = -\frac{8}{3}
(3) sin3θ+cos3θ\sin^3\theta + \cos^3\theta の計算
sin3θ+cos3θ=(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)=(sinθ+cosθ)(1sinθcosθ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta) = (\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta)
sinθ+cosθ=12\sin\theta + \cos\theta = \frac{1}{2} , sinθcosθ=38\sin\theta\cos\theta = -\frac{3}{8} より、
sin3θ+cos3θ=12(1(38))=12(1+38)=12(88+38)=12(118)=1116\sin^3\theta + \cos^3\theta = \frac{1}{2}(1 - (-\frac{3}{8})) = \frac{1}{2}(1 + \frac{3}{8}) = \frac{1}{2}(\frac{8}{8} + \frac{3}{8}) = \frac{1}{2}(\frac{11}{8}) = \frac{11}{16}

3. 最終的な答え

* sinθcosθ=38\sin\theta\cos\theta = -\frac{3}{8}
* tanθ+1tanθ=83\tan\theta + \frac{1}{\tan\theta} = -\frac{8}{3}
* sin3θ+cos3θ=1116\sin^3\theta + \cos^3\theta = \frac{11}{16}

「解析学」の関連問題

与えられた積分を計算します。 $\int \frac{1}{x \sqrt{2 + x - x^2}} dx$

積分置換積分三角関数部分分数分解
2025/6/4

$\int \sqrt{\frac{x-1}{x+1}}dx$ を計算する問題です。ただし、$x > 1$とします。

積分置換積分逆双曲線関数
2025/6/4

以下の不定積分を計算する。 $\int \frac{\cos^2 x}{2 - \sin^2 x} dx$

積分不定積分三角関数置換積分
2025/6/4

$\int \frac{x + \sin x}{1 + \cos x} dx$ を計算します。

積分三角関数部分積分置換積分
2025/6/4

関数 $f(x) = 2x^3 - 3x^2 + 6kx$ が極大値と極小値をもち、その差が8であるとき、実数 $k$ の値を求める問題です。

極値微分関数解の差
2025/6/4

与えられた関数 $f(x) = x^4 - 6x^2 + 8x - 3$ と $g(x) = -x^3 + 2x^2 + x + 3$ の極値を求める問題です。

微分極値導関数二階導関数三次導関数
2025/6/4

関数 $g(x) = -x^3 + 2x^2 + x + 3$ が与えられています。この関数に関して、極値などを求める問題の一部だと思われます。ここでは、関数 $g(x)$ が与えられたところまでを扱...

微分導関数関数の微分
2025/6/4

次の2つの関数の極値を求める問題です。 (1) $f(x) = x^4 - 6x^2 + 8x - 3$ (2) $g(x) = -x^3 + 2x^2 + x + 3$

微分極値関数の増減三次関数四次関数
2025/6/4

与えられた極限を計算します。 $$\lim_{x \to \infty} x \left( \frac{\pi}{2} - \arctan(x) \right)$$

極限arctan三角関数ロピタルの定理
2025/6/4

次の不等式を証明します。 (1) $x \log x \ge x - 1$ ($x > 0$) (2) $\frac{2}{\pi}x < \sin x < x$ ($0 < x < \frac{\p...

不等式微分関数の単調性対数関数三角関数
2025/6/4