以下の不定積分を計算する。 $\int \frac{\cos^2 x}{2 - \sin^2 x} dx$解析学積分不定積分三角関数置換積分2025/6/41. 問題の内容以下の不定積分を計算する。∫cos2x2−sin2xdx\int \frac{\cos^2 x}{2 - \sin^2 x} dx∫2−sin2xcos2xdx2. 解き方の手順まず、cos2x=1−sin2x\cos^2 x = 1 - \sin^2 xcos2x=1−sin2x を用いて、積分を書き換える。∫cos2x2−sin2xdx=∫1−sin2x2−sin2xdx\int \frac{\cos^2 x}{2 - \sin^2 x} dx = \int \frac{1 - \sin^2 x}{2 - \sin^2 x} dx∫2−sin2xcos2xdx=∫2−sin2x1−sin2xdx次に、分母と分子を分離する。∫1−sin2x2−sin2xdx=∫2−sin2x−12−sin2xdx=∫(1−12−sin2x)dx\int \frac{1 - \sin^2 x}{2 - \sin^2 x} dx = \int \frac{2 - \sin^2 x - 1}{2 - \sin^2 x} dx = \int (1 - \frac{1}{2 - \sin^2 x}) dx∫2−sin2x1−sin2xdx=∫2−sin2x2−sin2x−1dx=∫(1−2−sin2x1)dx=∫1dx−∫12−sin2xdx=x−∫12−sin2xdx= \int 1 dx - \int \frac{1}{2 - \sin^2 x} dx = x - \int \frac{1}{2 - \sin^2 x} dx=∫1dx−∫2−sin2x1dx=x−∫2−sin2x1dx次に、∫12−sin2xdx\int \frac{1}{2 - \sin^2 x} dx∫2−sin2x1dx を計算する。分子と分母を cos2x\cos^2 xcos2x で割る。∫12−sin2xdx=∫1cos2x2cos2x−sin2xcos2xdx=∫sec2x2sec2x−tan2xdx\int \frac{1}{2 - \sin^2 x} dx = \int \frac{\frac{1}{\cos^2 x}}{\frac{2}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x}} dx = \int \frac{\sec^2 x}{2\sec^2 x - \tan^2 x} dx∫2−sin2x1dx=∫cos2x2−cos2xsin2xcos2x1dx=∫2sec2x−tan2xsec2xdxここで sec2x=1+tan2x\sec^2 x = 1 + \tan^2 xsec2x=1+tan2x なので=∫sec2x2(1+tan2x)−tan2xdx=∫sec2x2+tan2xdx= \int \frac{\sec^2 x}{2(1 + \tan^2 x) - \tan^2 x} dx = \int \frac{\sec^2 x}{2 + \tan^2 x} dx=∫2(1+tan2x)−tan2xsec2xdx=∫2+tan2xsec2xdxここで、u=tanxu = \tan xu=tanx と置換すると、 du=sec2xdxdu = \sec^2 x dxdu=sec2xdx となるので∫sec2x2+tan2xdx=∫12+u2du=∫1(2)2+u2du\int \frac{\sec^2 x}{2 + \tan^2 x} dx = \int \frac{1}{2 + u^2} du = \int \frac{1}{ (\sqrt{2})^2 + u^2} du∫2+tan2xsec2xdx=∫2+u21du=∫(2)2+u21duこれは 1a2+x2\frac{1}{a^2 + x^2}a2+x21 の積分なので、∫1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C∫a2+x21dx=a1arctan(ax)+C より∫1(2)2+u2du=12arctan(u2)+C=12arctan(tanx2)+C\int \frac{1}{(\sqrt{2})^2 + u^2} du = \frac{1}{\sqrt{2}} \arctan(\frac{u}{\sqrt{2}}) + C = \frac{1}{\sqrt{2}} \arctan(\frac{\tan x}{\sqrt{2}}) + C∫(2)2+u21du=21arctan(2u)+C=21arctan(2tanx)+Cしたがって、∫cos2x2−sin2xdx=x−12arctan(tanx2)+C\int \frac{\cos^2 x}{2 - \sin^2 x} dx = x - \frac{1}{\sqrt{2}} \arctan(\frac{\tan x}{\sqrt{2}}) + C∫2−sin2xcos2xdx=x−21arctan(2tanx)+C3. 最終的な答えx−12arctan(tanx2)+Cx - \frac{1}{\sqrt{2}}\arctan\left(\frac{\tan x}{\sqrt{2}}\right) + Cx−21arctan(2tanx)+C