関数 $y = \frac{(x-2)^3(x+1)}{(x-1)^2}$ を微分せよ。解析学微分関数の微分対数微分法2025/6/61. 問題の内容関数 y=(x−2)3(x+1)(x−1)2y = \frac{(x-2)^3(x+1)}{(x-1)^2}y=(x−1)2(x−2)3(x+1) を微分せよ。2. 解き方の手順まず、与えられた関数を yyy とおきます。y=(x−2)3(x+1)(x−1)2y = \frac{(x-2)^3(x+1)}{(x-1)^2}y=(x−1)2(x−2)3(x+1)両辺の自然対数をとります。lny=ln(x−2)3(x+1)(x−1)2=3ln(x−2)+ln(x+1)−2ln(x−1)\ln y = \ln \frac{(x-2)^3(x+1)}{(x-1)^2} = 3 \ln(x-2) + \ln(x+1) - 2 \ln(x-1)lny=ln(x−1)2(x−2)3(x+1)=3ln(x−2)+ln(x+1)−2ln(x−1)両辺を xxx で微分します。1ydydx=3x−2+1x+1−2x−1\frac{1}{y} \frac{dy}{dx} = \frac{3}{x-2} + \frac{1}{x+1} - \frac{2}{x-1}y1dxdy=x−23+x+11−x−12dydx=y(3x−2+1x+1−2x−1)\frac{dy}{dx} = y \left( \frac{3}{x-2} + \frac{1}{x+1} - \frac{2}{x-1} \right)dxdy=y(x−23+x+11−x−12)yyy を代入します。dydx=(x−2)3(x+1)(x−1)2(3x−2+1x+1−2x−1)\frac{dy}{dx} = \frac{(x-2)^3(x+1)}{(x-1)^2} \left( \frac{3}{x-2} + \frac{1}{x+1} - \frac{2}{x-1} \right)dxdy=(x−1)2(x−2)3(x+1)(x−23+x+11−x−12)dydx=(x−2)3(x+1)(x−1)2(3(x+1)(x−1)+(x−2)(x−1)−2(x−2)(x+1)(x−2)(x+1)(x−1))\frac{dy}{dx} = \frac{(x-2)^3(x+1)}{(x-1)^2} \left( \frac{3(x+1)(x-1) + (x-2)(x-1) - 2(x-2)(x+1)}{(x-2)(x+1)(x-1)} \right)dxdy=(x−1)2(x−2)3(x+1)((x−2)(x+1)(x−1)3(x+1)(x−1)+(x−2)(x−1)−2(x−2)(x+1))dydx=(x−2)2(x−1)3(3(x2−1)+(x2−3x+2)−2(x2−x−2))\frac{dy}{dx} = \frac{(x-2)^2}{(x-1)^3} \left( 3(x^2 - 1) + (x^2 - 3x + 2) - 2(x^2 - x - 2) \right)dxdy=(x−1)3(x−2)2(3(x2−1)+(x2−3x+2)−2(x2−x−2))dydx=(x−2)2(x−1)3(3x2−3+x2−3x+2−2x2+2x+4)\frac{dy}{dx} = \frac{(x-2)^2}{(x-1)^3} \left( 3x^2 - 3 + x^2 - 3x + 2 - 2x^2 + 2x + 4 \right)dxdy=(x−1)3(x−2)2(3x2−3+x2−3x+2−2x2+2x+4)dydx=(x−2)2(x−1)3(2x2−x+3)\frac{dy}{dx} = \frac{(x-2)^2}{(x-1)^3} \left( 2x^2 - x + 3 \right)dxdy=(x−1)3(x−2)2(2x2−x+3)3. 最終的な答えdydx=(x−2)2(2x2−x+3)(x−1)3\frac{dy}{dx} = \frac{(x-2)^2(2x^2 - x + 3)}{(x-1)^3}dxdy=(x−1)3(x−2)2(2x2−x+3)