画像に写っている数学の問題を解く。問題は平方根、近似値、不等号、無理数、有効数字などに関するものである。具体的には、以下の問題に答える。 問1: 平方根を求める 問2: 根号を使わずに数を表す 問3: 不等号の記入 問4: 近似値と有効数字に関する問題 問5: 無理数の選択 問6: $\sqrt{10}$ の近似値を求める

算数平方根近似値不等号無理数有効数字
2025/4/7

1. 問題の内容

画像に写っている数学の問題を解く。問題は平方根、近似値、不等号、無理数、有効数字などに関するものである。具体的には、以下の問題に答える。
問1: 平方根を求める
問2: 根号を使わずに数を表す
問3: 不等号の記入
問4: 近似値と有効数字に関する問題
問5: 無理数の選択
問6: 10\sqrt{10} の近似値を求める

2. 解き方の手順

問1:
(1) 64の平方根は、±8\pm 8。したがって、アは±8\pm 8
(2) 15の平方根は、±15\pm \sqrt{15}。したがって、イは±15\pm \sqrt{15}
(3) 23\frac{2}{3}の平方根は、±23\pm \sqrt{\frac{2}{3}}。したがって、ウは±23\pm \sqrt{\frac{2}{3}}
(4) 0.7の平方根は、±0.7\pm \sqrt{0.7}。したがって、エは±0.7\pm \sqrt{0.7}
問2:
(1) 169=13\sqrt{169} = 13。したがって、オは13。
(2) 181=19-\sqrt{\frac{1}{81}} = -\frac{1}{9}。したがって、カは19-\frac{1}{9}
(3) (4)2=16=4\sqrt{(-4)^2} = \sqrt{16} = 4。したがって、キは4。
問3:
(1) 13\sqrt{13}15\sqrt{15} を比較する。13<1513 < 15 より、13<15\sqrt{13} < \sqrt{15}。したがって、クは<<
(2) 5516\sqrt{16} を比較する。16=4\sqrt{16} = 4 であり、5>45 > 4 なので、5>165 > \sqrt{16}。したがって、ケは> >
(3) 1515200\sqrt{200} を比較する。200=100×2=10210×1.414=14.14\sqrt{200} = \sqrt{100 \times 2} = 10\sqrt{2} \approx 10 \times 1.414 = 14.1415>14.1415 > 14.14 より、15>20015 > \sqrt{200}。したがって、コは> >
問4:
(1) 測定値5.50gは、四捨五入によって得られた近似値である。真の値をaaとすると、5.495a<5.5055.495 \le a < 5.505。したがって、サは5.4955.495、シは5.5055.505
(2) 日本の面積はおよそ378000km²である。有効数字を3, 7, 8 とすると、3.78×1053.78 \times 10^5 km²。したがって、スは3.78×1053.78 \times 10^5
問5:
1.6\sqrt{1.6} は無理数。
163=43\frac{\sqrt{16}}{3} = \frac{4}{3} は有理数。
1.61.6 は有理数。
1616 は有理数。
したがって、セは①。
問6:
右の計算を利用して、10\sqrt{10}のおよその数を小数第2位まで求める。3.162=9.98563.16^2 = 9.9856 であり、3.172=10.04893.17^2 = 10.0489 である。10\sqrt{10} は3.16と3.17の間にある。10に近いのは3.1623.16^2 なので、103.16\sqrt{10} \approx 3.16。したがって、ソは3.16。

3. 最終的な答え

問1: ア: ±8\pm 8, イ: ±15\pm \sqrt{15}, ウ: ±23\pm \sqrt{\frac{2}{3}}, エ: ±0.7\pm \sqrt{0.7}
問2: オ: 13, カ: 19-\frac{1}{9}, キ: 4
問3: ク: <<, ケ: >>, コ: >>
問4: サ: 5.4955.495, シ: 5.5055.505, ス: 3.78×1053.78 \times 10^5
問5: セ: ①
問6: ソ: 3.163.16

「算数」の関連問題

$\sqrt{8} \times \sqrt{2}$を計算しなさい。

平方根計算
2025/4/12

AクラスとBクラスの英語と数学の平均点、および人数が与えられています。AクラスとBクラスを合わせた英語と数学の合計点の平均点を求めます。

平均合計計算
2025/4/11

与えられた計算 $3-9-6$ を解く問題です。

計算減算四則演算
2025/4/11

154にできるだけ小さい自然数をかけて、12の倍数にするには、どんな数をかければ良いか。

倍数素因数分解最小公倍数
2025/4/11

ある本を、はじめの日に全体のページ数の$\frac{1}{4}$を読み、次の日に残ったページ数の半分を読んだところ、まだ102ページ残っていた。この本の全体のページ数は何ページか求める。

分数文章題割合方程式
2025/4/11

画像に写っている算数の問題は、小数のかさを求める問題、小数で表された量を合わせた量を求める問題、そして小数を集めた数がいくつになるかを求める問題です。

小数計算体積
2025/4/11

- 1: 数直線上のアとイが示す値を求める。 - 2: (1) 2.365の1/100の位の数字を求める。(2) 1.05, 1.5, 0.15 を小さい順に並べる。(3) 0.01を480個集...

小数数直線計算
2025/4/11

右の数直線について、以下の問いに答える。 (1) ア、イのめもりは、それぞれ何 L を表しているか。 (2) $\frac{1}{7}$ L の 9 こ分は何 L か。

分数数直線分数の計算
2025/4/11

問題1は、図にかげをつけた部分の長さが何mか答える問題です。問題2は、数直線上のア、イの目盛りが何Lを表しているかと、$1/7$Lの9こ分は何Lか答える問題です。

分数長さ数直線
2025/4/11

(2) 次の仮分数を、帯分数または整数になおしなさい。 ① $\frac{8}{3}$ ② $\frac{35}{7}$ (3) 2.6 の $\frac{1}{10}$ の位の数字を答えなさい。

分数帯分数割り算小数
2025/4/11