8種類のケーキの中から4種類を選ぶとき、特定の1種類を必ず含む選び方は何通りあるかを求める問題です。

算数組み合わせ組み合わせの公式場合の数数学的思考
2025/4/9

1. 問題の内容

8種類のケーキの中から4種類を選ぶとき、特定の1種類を必ず含む選び方は何通りあるかを求める問題です。

2. 解き方の手順

特定の1種類を必ず含む選び方を考えるので、まずその特定の1種類を確定させます。
次に、残りの3種類を、残りの7種類のケーキから選ぶ組み合わせを考えます。
これは組み合わせの問題なので、組み合わせの公式を使います。
7種類から3種類を選ぶ組み合わせの数は、7C3 _7C_3 で表されます。
組み合わせの公式は以下の通りです。
nCr=n!r!(nr)!_nC_r = \frac{n!}{r!(n-r)!}
この公式を用いて、7C3 _7C_3 を計算します。
7C3=7!3!(73)!=7!3!4!=7×6×5×4×3×2×1(3×2×1)(4×3×2×1)=7×6×53×2×1=7×5=35_7C_3 = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(4 \times 3 \times 2 \times 1)} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 7 \times 5 = 35
したがって、特定の1種類を必ず含む選び方は35通りです。

3. 最終的な答え

35通り

「算数」の関連問題

容器アには4%の食塩水が150g入っており、容器イにも食塩水が入っている。容器イから450gの食塩水を取り出し、容器アに入れて混ぜると8.2%の食塩水になった。その後、容器イに容器アと同じ重さになるま...

食塩水濃度割合方程式
2025/4/19

Aの容器に6%の食塩水350g、Bの容器に4%の食塩水480gが入っている。A,Bからそれぞれxgの食塩水を取り出し、Aから取り出した食塩水はBに、Bから取り出した食塩水はAに入れ、混ぜた結果、2つの...

濃度食塩水方程式文章問題
2025/4/19

与えられた数式を計算する問題です。数式は $165.3 \div (-8.3) \times 2.0$ です。

四則演算小数
2025/4/19

与えられた数列 $\frac{1}{1}, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{3}{3}, \frac{5}{3}, \frac{1}{4}, ...

数列規則性分数級数
2025/4/19

A中学校の卒業生は300人、B中学校の卒業生は400人です。A中学校からC高校への進学率は45%、B中学校からC高校への進学率は30%です。2つの学校からC高校へ進学した生徒数の合計を求めます。

割合計算文章問題
2025/4/19

画像の右上に分数と整数の足し算の問題が2つあります。1つ目は$\frac{3}{4} + \frac{5}{3}$、2つ目は$\frac{8}{3} + 1$です。

分数加算最小公倍数
2025/4/19

与えられた分数 $\frac{2}{3}$ と $\frac{10}{15}$ が等しいかどうかを確認する問題です。

分数等価分数
2025/4/19

A駅の乗車人員が、月曜日から金曜日までは1日あたり3000人、土曜日は2000人、日曜日は1900人である。A駅の1日あたりの平均乗車人員を求める。

平均計算乗算除算
2025/4/18

画像に書かれた4つの計算問題を解く。 (1) $8246 + 5204 - 3204 - 6246$ (2) $100 - 48 \div (12 + 4) \times 20$ (3) $16 + ...

四則演算計算方程式算術
2025/4/18

$16 + (\boxed{} - 12) \times 3 = 40$より、$(\boxed{} - 12) \times 3 = 40 - 16 = 24$ となります。

四則演算方程式計算
2025/4/18