We need to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}$.

AnalysisInfinite SeriesPartial FractionsAlternating SeriesConvergenceLogarithms
2025/3/13

1. Problem Description

We need to find the sum of the series n=1(1)n+1n(n+1)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}.

2. Solution Steps

First, we decompose the fraction 1n(n+1)\frac{1}{n(n+1)} using partial fractions.
1n(n+1)=An+Bn+1\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}.
Multiplying both sides by n(n+1)n(n+1), we get
1=A(n+1)+Bn1 = A(n+1) + Bn.
When n=0n = 0, we have 1=A(0+1)+B(0)1 = A(0+1) + B(0), so A=1A = 1.
When n=1n = -1, we have 1=A(1+1)+B(1)1 = A(-1+1) + B(-1), so B=1-B = 1, which means B=1B = -1.
Therefore,
1n(n+1)=1n1n+1\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.
Now we can rewrite the series as
n=1(1)n+11n(n+1)=n=1(1)n+1(1n1n+1)=n=1(1)n+1nn=1(1)n+1n+1\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n+1} (\frac{1}{n} - \frac{1}{n+1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}.
We know that the alternating harmonic series is n=1(1)n+1n=112+1314+=ln(2)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln(2).
Now, consider the second summation:
n=1(1)n+1n+1=1213+1415+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1} = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \cdots
=1(112+1314+)=1n=1(1)n+1n=1ln(2)= 1 - (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots) = 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \ln(2).
Then the original sum becomes:
n=1(1)n+1n(n+1)=ln(2)(1ln(2))=2ln(2)1\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} = \ln(2) - (1 - \ln(2)) = 2\ln(2) - 1.

2. Final Answer

2ln(2)12\ln(2) - 1

Related problems in "Analysis"

We are given the function $f(x) = (x+1)(x+2)(x+3)...(x+100)$. We need to find the derivative of $f(x...

DifferentiationDerivativesProduct RuleLimitsFactorials
2025/7/15

We need to evaluate the definite integral $I = \int_{-4}^{0} \frac{1}{\sqrt{4-x}} dx$.

Definite IntegralSubstitutionIntegration TechniquesCalculus
2025/7/14

We are given the equation $\int \frac{1}{tan(y)} dy = \int x dx$ and asked to solve it.

IntegrationTrigonometric FunctionsIndefinite IntegralsDifferential Equations
2025/7/12

We need to evaluate the limit of the expression $\frac{x-3}{1-\sqrt{4-x}}$ as $x$ approaches $3$.

LimitsCalculusIndeterminate FormsConjugateAlgebraic Manipulation
2025/7/11

We need to evaluate the limit: $\lim_{x\to 3} \frac{x-3}{1 - \sqrt{4-x}}$.

LimitsIndeterminate FormsConjugateRationalization
2025/7/11

We are asked to find the limit of the function $\frac{2x^2 + 3x + 4}{x-1}$ as $x$ approaches 1 from ...

LimitsCalculusFunctions
2025/7/8

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3