We need to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}$.

AnalysisInfinite SeriesPartial FractionsAlternating SeriesConvergenceLogarithms
2025/3/13

1. Problem Description

We need to find the sum of the series n=1(1)n+1n(n+1)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}.

2. Solution Steps

First, we decompose the fraction 1n(n+1)\frac{1}{n(n+1)} using partial fractions.
1n(n+1)=An+Bn+1\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}.
Multiplying both sides by n(n+1)n(n+1), we get
1=A(n+1)+Bn1 = A(n+1) + Bn.
When n=0n = 0, we have 1=A(0+1)+B(0)1 = A(0+1) + B(0), so A=1A = 1.
When n=1n = -1, we have 1=A(1+1)+B(1)1 = A(-1+1) + B(-1), so B=1-B = 1, which means B=1B = -1.
Therefore,
1n(n+1)=1n1n+1\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.
Now we can rewrite the series as
n=1(1)n+11n(n+1)=n=1(1)n+1(1n1n+1)=n=1(1)n+1nn=1(1)n+1n+1\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n+1} (\frac{1}{n} - \frac{1}{n+1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}.
We know that the alternating harmonic series is n=1(1)n+1n=112+1314+=ln(2)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln(2).
Now, consider the second summation:
n=1(1)n+1n+1=1213+1415+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1} = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \cdots
=1(112+1314+)=1n=1(1)n+1n=1ln(2)= 1 - (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots) = 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \ln(2).
Then the original sum becomes:
n=1(1)n+1n(n+1)=ln(2)(1ln(2))=2ln(2)1\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} = \ln(2) - (1 - \ln(2)) = 2\ln(2) - 1.

2. Final Answer

2ln(2)12\ln(2) - 1

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1