We need to find the exact values of three trigonometric functions without using a calculator: 12) $\sin{\frac{5\pi}{3}}$ 13) $\tan{\frac{-5\pi}{6}}$ 14) $\csc{\frac{5\pi}{3}}$

TrigonometryTrigonometryUnit CircleTrigonometric FunctionsSineCosineTangentCosecantReference AnglesAngle ConversionQuadrant Analysis
2025/3/13

1. Problem Description

We need to find the exact values of three trigonometric functions without using a calculator:
12) sin5π3\sin{\frac{5\pi}{3}}
13) tan5π6\tan{\frac{-5\pi}{6}}
14) csc5π3\csc{\frac{5\pi}{3}}

2. Solution Steps

12) sin5π3\sin{\frac{5\pi}{3}}
The angle 5π3\frac{5\pi}{3} is in the fourth quadrant. The reference angle is 2π5π3=π32\pi - \frac{5\pi}{3} = \frac{\pi}{3}.
Since sine is negative in the fourth quadrant, we have
sin5π3=sinπ3\sin{\frac{5\pi}{3}} = -\sin{\frac{\pi}{3}}.
We know that sinπ3=32\sin{\frac{\pi}{3}} = \frac{\sqrt{3}}{2}.
Therefore, sin5π3=32\sin{\frac{5\pi}{3}} = -\frac{\sqrt{3}}{2}.
13) tan5π6\tan{\frac{-5\pi}{6}}
Since tangent is an odd function, tan(x)=tan(x)\tan(-x) = -\tan(x). Therefore, tan5π6=tan5π6\tan{\frac{-5\pi}{6}} = -\tan{\frac{5\pi}{6}}.
The angle 5π6\frac{5\pi}{6} is in the second quadrant. The reference angle is π5π6=π6\pi - \frac{5\pi}{6} = \frac{\pi}{6}.
Since tangent is negative in the second quadrant, tan5π6=tanπ6\tan{\frac{5\pi}{6}} = -\tan{\frac{\pi}{6}}.
Therefore, tan5π6=tan5π6=(tanπ6)=tanπ6\tan{\frac{-5\pi}{6}} = -\tan{\frac{5\pi}{6}} = -(-\tan{\frac{\pi}{6}}) = \tan{\frac{\pi}{6}}.
We know that tanπ6=sinπ6cosπ6=1232=13=33\tan{\frac{\pi}{6}} = \frac{\sin{\frac{\pi}{6}}}{\cos{\frac{\pi}{6}}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.
Therefore, tan5π6=33\tan{\frac{-5\pi}{6}} = \frac{\sqrt{3}}{3}.
14) csc5π3\csc{\frac{5\pi}{3}}
We know that csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}.
From the first question, we already found that sin5π3=32\sin{\frac{5\pi}{3}} = -\frac{\sqrt{3}}{2}.
Therefore, csc5π3=132=23=233\csc{\frac{5\pi}{3}} = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}.

3. Final Answer

12) 32-\frac{\sqrt{3}}{2}
13) 33\frac{\sqrt{3}}{3}
14) 233-\frac{2\sqrt{3}}{3}

Related problems in "Trigonometry"

We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos ...

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22

The problem asks to solve for $x$ in the equation $\sin(5 \times 21^{\circ}) = \cos(9^{\circ}) + \ta...

Trigonometric EquationsTrigonometric IdentitiesSineCosineTangentAngle Sum and Difference Identities
2025/4/21

The problem is to simplify the expression $\tan(x) \cot(9^\circ) + \tan(5x)$. I assume the question...

Trigonometric IdentitiesTangent FunctionCotangent FunctionSimplification
2025/4/21

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14