We need to evaluate the definite integral from $0$ to $+\infty$ of the function $\frac{[W(x)]^2}{x^2\sqrt{x}}$ with respect to $x$, where $W(x)$ is the Lambert W function. The integral is given by: $\int_{0}^{\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx$

AnalysisDefinite IntegralLambert W functionSubstitutionGamma Function
2025/4/12

1. Problem Description

We need to evaluate the definite integral from 00 to ++\infty of the function [W(x)]2x2x\frac{[W(x)]^2}{x^2\sqrt{x}} with respect to xx, where W(x)W(x) is the Lambert W function. The integral is given by:
0[W(x)]2x2xdx\int_{0}^{\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx

2. Solution Steps

To evaluate the integral, we can use the substitution x=tetx = t e^t, where t=W(x)t = W(x). Then, dx=(et+tet)dt=(1+t)etdtdx = (e^t + t e^t) dt = (1+t) e^t dt.
Also, we need to change the limits of integration. When x=0x = 0, t=W(0)=0t = W(0) = 0. As xx \to \infty, t=W(x)t = W(x) \to \infty.
The integral becomes:
0t2(tet)2tet(1+t)etdt=0t2t2e2tt1/2et/2(1+t)etdt=0t2(1+t)ett5/2e5t/2dt\int_{0}^{\infty} \frac{t^2}{(t e^t)^2 \sqrt{t e^t}} (1+t) e^t dt = \int_{0}^{\infty} \frac{t^2}{t^2 e^{2t} t^{1/2} e^{t/2}} (1+t) e^t dt = \int_{0}^{\infty} \frac{t^2 (1+t) e^t}{t^{5/2} e^{5t/2}} dt
=0t2(1+t)t5/2e3t/2dt=0t1/2(1+t)e3t/2dt=0t1/2e3t/2dt+0t1/2e3t/2dt= \int_{0}^{\infty} \frac{t^2 (1+t)}{t^{5/2} e^{3t/2}} dt = \int_{0}^{\infty} t^{-1/2} (1+t) e^{-3t/2} dt = \int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{\infty} t^{1/2} e^{-3t/2} dt
Now, we use the Gamma function formula:
Γ(z)=0xz1exdx\Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx
Let u=3t2u = \frac{3t}{2}. Then t=2u3t = \frac{2u}{3} and dt=23dudt = \frac{2}{3} du.
0t1/2e3t/2dt=0(2u3)1/2eu23du=(23)1/2230u1/2eudu=2332Γ(12)=2332π=23π32=6π3\int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt = \int_{0}^{\infty} (\frac{2u}{3})^{-1/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{-1/2} \frac{2}{3} \int_{0}^{\infty} u^{-1/2} e^{-u} du = \frac{2}{3} \sqrt{\frac{3}{2}} \Gamma(\frac{1}{2}) = \frac{2}{3} \sqrt{\frac{3}{2}} \sqrt{\pi} = \frac{2 \sqrt{3\pi}}{3\sqrt{2}} = \frac{\sqrt{6\pi}}{3}.
0t1/2e3t/2dt=0(2u3)1/2eu23du=(23)1/2230u1/2eudu=2323Γ(32)=232312Γ(12)=1323π=2π33=6π9\int_{0}^{\infty} t^{1/2} e^{-3t/2} dt = \int_{0}^{\infty} (\frac{2u}{3})^{1/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{1/2} \frac{2}{3} \int_{0}^{\infty} u^{1/2} e^{-u} du = \frac{2}{3} \sqrt{\frac{2}{3}} \Gamma(\frac{3}{2}) = \frac{2}{3} \sqrt{\frac{2}{3}} \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{3} \sqrt{\frac{2}{3}} \sqrt{\pi} = \frac{\sqrt{2\pi}}{3\sqrt{3}} = \frac{\sqrt{6\pi}}{9}.
0t1/2e3t/2dt+0t1/2e3t/2dt=6π3+6π9=36π+6π9=46π9\int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{\infty} t^{1/2} e^{-3t/2} dt = \frac{\sqrt{6\pi}}{3} + \frac{\sqrt{6\pi}}{9} = \frac{3\sqrt{6\pi} + \sqrt{6\pi}}{9} = \frac{4\sqrt{6\pi}}{9}.

3. Final Answer

The final answer is 46π9\frac{4\sqrt{6\pi}}{9}

Related problems in "Analysis"

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1