We need to evaluate the definite integral from $0$ to $+\infty$ of the function $\frac{[W(x)]^2}{x^2\sqrt{x}}$ with respect to $x$, where $W(x)$ is the Lambert W function. The integral is given by: $\int_{0}^{\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx$

AnalysisDefinite IntegralLambert W functionSubstitutionGamma Function
2025/4/12

1. Problem Description

We need to evaluate the definite integral from 00 to ++\infty of the function [W(x)]2x2x\frac{[W(x)]^2}{x^2\sqrt{x}} with respect to xx, where W(x)W(x) is the Lambert W function. The integral is given by:
0[W(x)]2x2xdx\int_{0}^{\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx

2. Solution Steps

To evaluate the integral, we can use the substitution x=tetx = t e^t, where t=W(x)t = W(x). Then, dx=(et+tet)dt=(1+t)etdtdx = (e^t + t e^t) dt = (1+t) e^t dt.
Also, we need to change the limits of integration. When x=0x = 0, t=W(0)=0t = W(0) = 0. As xx \to \infty, t=W(x)t = W(x) \to \infty.
The integral becomes:
0t2(tet)2tet(1+t)etdt=0t2t2e2tt1/2et/2(1+t)etdt=0t2(1+t)ett5/2e5t/2dt\int_{0}^{\infty} \frac{t^2}{(t e^t)^2 \sqrt{t e^t}} (1+t) e^t dt = \int_{0}^{\infty} \frac{t^2}{t^2 e^{2t} t^{1/2} e^{t/2}} (1+t) e^t dt = \int_{0}^{\infty} \frac{t^2 (1+t) e^t}{t^{5/2} e^{5t/2}} dt
=0t2(1+t)t5/2e3t/2dt=0t1/2(1+t)e3t/2dt=0t1/2e3t/2dt+0t1/2e3t/2dt= \int_{0}^{\infty} \frac{t^2 (1+t)}{t^{5/2} e^{3t/2}} dt = \int_{0}^{\infty} t^{-1/2} (1+t) e^{-3t/2} dt = \int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{\infty} t^{1/2} e^{-3t/2} dt
Now, we use the Gamma function formula:
Γ(z)=0xz1exdx\Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx
Let u=3t2u = \frac{3t}{2}. Then t=2u3t = \frac{2u}{3} and dt=23dudt = \frac{2}{3} du.
0t1/2e3t/2dt=0(2u3)1/2eu23du=(23)1/2230u1/2eudu=2332Γ(12)=2332π=23π32=6π3\int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt = \int_{0}^{\infty} (\frac{2u}{3})^{-1/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{-1/2} \frac{2}{3} \int_{0}^{\infty} u^{-1/2} e^{-u} du = \frac{2}{3} \sqrt{\frac{3}{2}} \Gamma(\frac{1}{2}) = \frac{2}{3} \sqrt{\frac{3}{2}} \sqrt{\pi} = \frac{2 \sqrt{3\pi}}{3\sqrt{2}} = \frac{\sqrt{6\pi}}{3}.
0t1/2e3t/2dt=0(2u3)1/2eu23du=(23)1/2230u1/2eudu=2323Γ(32)=232312Γ(12)=1323π=2π33=6π9\int_{0}^{\infty} t^{1/2} e^{-3t/2} dt = \int_{0}^{\infty} (\frac{2u}{3})^{1/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{1/2} \frac{2}{3} \int_{0}^{\infty} u^{1/2} e^{-u} du = \frac{2}{3} \sqrt{\frac{2}{3}} \Gamma(\frac{3}{2}) = \frac{2}{3} \sqrt{\frac{2}{3}} \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{3} \sqrt{\frac{2}{3}} \sqrt{\pi} = \frac{\sqrt{2\pi}}{3\sqrt{3}} = \frac{\sqrt{6\pi}}{9}.
0t1/2e3t/2dt+0t1/2e3t/2dt=6π3+6π9=36π+6π9=46π9\int_{0}^{\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{\infty} t^{1/2} e^{-3t/2} dt = \frac{\sqrt{6\pi}}{3} + \frac{\sqrt{6\pi}}{9} = \frac{3\sqrt{6\pi} + \sqrt{6\pi}}{9} = \frac{4\sqrt{6\pi}}{9}.

3. Final Answer

The final answer is 46π9\frac{4\sqrt{6\pi}}{9}

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13