I=∫0+∞x2x[W(x)]2dx=∫0+∞x5/2[W(x)]2dx Let x=tet, so W(x)=t. Also, dx=(et+tet)dt=(1+t)etdt. The limits of integration need to be updated.
When x=0, tet=0, so t=0. When x→∞, tet→∞, so t→∞. I=∫0+∞(tet)5/2t2(1+t)etdt=∫0+∞t5/2e5t/2t2(1+t)etdt=∫0+∞t5/2e3t/2t2(1+t)dt=∫0+∞t5/2e3t/2t2+tdt=∫0+∞(t−1/2+t−3/2)e−3t/2dt I=∫0+∞t−1/2e−3t/2dt+∫0+∞t−3/2e−3t/2dt Recall the gamma function:
Γ(z)=∫0∞xz−1e−xdx Let u=23t, so t=32u and dt=32du. Then,
∫0∞t−1/2e−3t/2dt=∫0∞(32u)−1/2e−u32du=(32)1/232∫0∞u−1/2e−udu=(32)1/232Γ(21)=3322π=926π Similarly,
∫0∞t−3/2e−3t/2dt=∫0∞(32u)−3/2e−u32du=(32)−3/232∫0∞u−3/2e−udu=(23)3/232Γ(−21). This diverges since Γ(−1/2) is undefined. However, we can integrate by parts:
∫0∞t−3/2e−3t/2dt=[−1/2t−1/2e−3t/2]0∞−∫0∞−1/2t−1/2(−23)e−3t/2dt=[−2t−1/2e−3t/2]0∞−3∫0∞t−1/2e−3t/2dt The term [−2t−1/2e−3t/2]0∞ is undefined at 0. However, let's assume we can evaluate this integral using the gamma function. For the integral to converge, z−1>−1, z>0. We need z−1=−3/2 so z=−1/2. Γ(−1/2) is undefined. There must be an error. The integral ∫0∞(t−1/2+t−3/2)e−3t/2dt diverges at t=0 since ∫0ϵt−3/2dt diverges for any ϵ>0.