We need to evaluate the definite integral: $\int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx$, where $W(x)$ is the Lambert W function.

AnalysisDefinite IntegralLambert W functionGamma FunctionIntegration by SubstitutionDivergence
2025/4/12

1. Problem Description

We need to evaluate the definite integral:
0+[W(x)]2x2xdx\int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx, where W(x)W(x) is the Lambert W function.

2. Solution Steps

Let the integral be II.
I=0+[W(x)]2x2xdx=0+[W(x)]2x5/2dxI = \int_{0}^{+\infty} \frac{[W(x)]^2}{x^2\sqrt{x}} dx = \int_{0}^{+\infty} \frac{[W(x)]^2}{x^{5/2}} dx
Let x=tetx = te^t, so W(x)=tW(x) = t. Also, dx=(et+tet)dt=(1+t)etdtdx = (e^t + te^t)dt = (1+t)e^t dt.
The limits of integration need to be updated.
When x=0x = 0, tet=0te^t = 0, so t=0t = 0.
When xx \to \infty, tette^t \to \infty, so tt \to \infty.
I=0+t2(tet)5/2(1+t)etdt=0+t2(1+t)ett5/2e5t/2dt=0+t2(1+t)t5/2e3t/2dt=0+t2+tt5/2e3t/2dt=0+(t1/2+t3/2)e3t/2dtI = \int_{0}^{+\infty} \frac{t^2}{(te^t)^{5/2}}(1+t)e^t dt = \int_{0}^{+\infty} \frac{t^2 (1+t) e^t}{t^{5/2} e^{5t/2}} dt = \int_{0}^{+\infty} \frac{t^2 (1+t)}{t^{5/2} e^{3t/2}} dt = \int_{0}^{+\infty} \frac{t^2 + t}{t^{5/2} e^{3t/2}} dt = \int_{0}^{+\infty} (t^{-1/2} + t^{-3/2}) e^{-3t/2} dt
I=0+t1/2e3t/2dt+0+t3/2e3t/2dtI = \int_{0}^{+\infty} t^{-1/2} e^{-3t/2} dt + \int_{0}^{+\infty} t^{-3/2} e^{-3t/2} dt
Recall the gamma function:
Γ(z)=0xz1exdx\Gamma(z) = \int_0^{\infty} x^{z-1} e^{-x} dx
Let u=3t2u = \frac{3t}{2}, so t=2u3t = \frac{2u}{3} and dt=23dudt = \frac{2}{3} du.
Then,
0t1/2e3t/2dt=0(2u3)1/2eu23du=(23)1/2230u1/2eudu=(23)1/223Γ(12)=2233π=26π9\int_0^{\infty} t^{-1/2} e^{-3t/2} dt = \int_0^{\infty} (\frac{2u}{3})^{-1/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{1/2} \frac{2}{3} \int_0^{\infty} u^{-1/2} e^{-u} du = (\frac{2}{3})^{1/2} \frac{2}{3} \Gamma(\frac{1}{2}) = \frac{2\sqrt{2}}{3\sqrt{3}} \sqrt{\pi} = \frac{2\sqrt{6\pi}}{9}
Similarly,
0t3/2e3t/2dt=0(2u3)3/2eu23du=(23)3/2230u3/2eudu=(32)3/223Γ(12)\int_0^{\infty} t^{-3/2} e^{-3t/2} dt = \int_0^{\infty} (\frac{2u}{3})^{-3/2} e^{-u} \frac{2}{3} du = (\frac{2}{3})^{-3/2} \frac{2}{3} \int_0^{\infty} u^{-3/2} e^{-u} du = (\frac{3}{2})^{3/2} \frac{2}{3} \Gamma(-\frac{1}{2}). This diverges since Γ(1/2)\Gamma(-1/2) is undefined.
However, we can integrate by parts:
0t3/2e3t/2dt=[t1/21/2e3t/2]00t1/21/2(32)e3t/2dt=[2t1/2e3t/2]030t1/2e3t/2dt\int_0^{\infty} t^{-3/2} e^{-3t/2} dt = \left[ \frac{t^{-1/2}}{-1/2} e^{-3t/2} \right]_0^{\infty} - \int_0^{\infty} \frac{t^{-1/2}}{-1/2} (-\frac{3}{2})e^{-3t/2} dt = [-2 t^{-1/2} e^{-3t/2}]_0^{\infty} - 3 \int_0^{\infty} t^{-1/2} e^{-3t/2} dt
The term [2t1/2e3t/2]0[-2 t^{-1/2} e^{-3t/2}]_0^{\infty} is undefined at 00.
However, let's assume we can evaluate this integral using the gamma function. For the integral to converge, z1>1z-1 > -1, z>0z>0.
We need z1=3/2z-1 = -3/2 so z=1/2z = -1/2. Γ(1/2)\Gamma(-1/2) is undefined. There must be an error.
The integral 0(t1/2+t3/2)e3t/2dt\int_0^{\infty} (t^{-1/2} + t^{-3/2}) e^{-3t/2} dt diverges at t=0t=0 since 0ϵt3/2dt\int_0^{\epsilon} t^{-3/2} dt diverges for any ϵ>0\epsilon>0.

3. Final Answer

The integral diverges.

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13